
Budapest University of Technology and Economics

Doctoral School of Informatics

Novel Network Optimization and

Data Compression Methods

Máté Imre Nagy
M.Sc. in Electrical Engineering

Summary of Ph.D. Dissertation

Advisor:

Gábor Rétvári, D.Sc.

Dept. of Telecommunications and Media Informatics and

Budapest University of Technology and Economics

Budapest, Hungary

2022

1 Introduction

Today, thanks to the appearance of smartphones, we all have daily hands-on experience

about latency-sensitive services like telephony, instant messaging or video streaming [1].

However, any system built to enable communication between endpoints has major challenges

to face. A well-known example is video streaming which often annoys the user with sudden

decrease in quality (e.g. due to limited bandwidth) or frequent disconnections caused by

malfunctioning network devices. Therefore, throughout the entire lifetime of a network,

the main goals of the operators are (I) to mitigate the possible failure events in the

infrastructure and (II) to ensure that all devices operate with maximum efficiency.

Getting prepared for arbitrary network failures is already a complex task on its

own. Unfortunately, the Internet Protocol (IP), is built to work in an unreliable, called

“best-effort” manner that poses difficult challenges to operators when they try to guarantee

the five nines (99.999%) availability. The distributed system, managed by routers, can easily

get into an inconsistent state where forwarding tables of routing devices show contradicting

entries due to failures in the network. This can often lead to the creation of forwarding

loops where packets keep bouncing between the interfaces of devices that eventually eats

up all their processing capacity.

The remedy for this phenomenon is to stop handling all traffic until the routers resolve

the situation by a so-called restoration process [2, 3]. As soon as it is finished, the traffic

is good to go — but only if it survived the downtime at all. This can often take hundreds

of milliseconds [4] that is usually unacceptable for highly-sensitive traffic. To overcome

this problem, the networking community introduced the IPFRR framework [5], which aims

to get prepared for the failures in-advance and takes action only local to the failure. The

challenge here is to find alternates that guarantee the loop-free delivery of packets dur-

ing this inconsistent state of the network. One particular solution, called the Loop-Free

Alternate(LFA) [6], emerged lately from the wide variety of proposals.

Let us overview this concept in Fig. 1a. The five routers are connected with links of

uniform cost and packets follow the shortest possible path between two endpoints. Assuming

the failure of link (c, b) the c → a traffic gets stopped until the restoration of the network

is finished, or unless we find a proper secondary path to which c can redirect its packets.

Luckily, it is easy to notice that regardless the failure of link c-b the neighboring router, d,

is still able to deliver packets to a along the path d-e-a. And most importantly, this path is

guaranteed to be loop-free as it does not contain the source of the packet, c, so there is no

risk of triggering a ping-pong effect between c and d. Unfortunately, there are no valid LFAs

1

e8 b2

a1

c3d5

(a) Sample topology

dest. nh. LFA
− d −
a b d
b b −
d d −
e d b

(b) Forwarding table of c

Figure 1. Demonstration of Loop-Free Alternates in a selected topology.

for all the source-destination pairs as it is depicted on Fig. 1b. Therefore, the first goal of

the Dissertation is to formulate different network optimization problems and design novel

algorithms incorporating the most common failure models in order to bring LFA protection

perfect in communication networks.

Our intention to increase the efficiency of networking related data processing

is not in the least easier task either. Not just the growth in scale of data, but also the

patterns and types of queries went through significant changes lately. Obviously, the way

of representing information followed these changes that gave rise of a wide set of novel

data structures, but without never losing sight of the ultimate goal: providing the fastest

possible answer by consuming the smallest amount of storage space. A practical example is

the poorly performing routing device that can hugely add to the overall latency of media

streams or introduce jitter in the network. To demonstrate this problem, we switch to a

more realistic representation of network addresses that is based on ids, and so we present

the corresponding forwarding table of router c in (Fig. 2a). The prefix column shows how to

merge multiple rules by using the binary format of destination addresses and the wildcard

character (∗) to match any bits. Thanks to this trick, the number of rules is now reduced to

4, but we still need to step through all the rules if the entry for the destination of a packet

resides in the last row of the table.

Since this is rather inefficient, the networking community turned to the prefix-tree rep-

resentation of the forwarding table that is available on Fig. 2b. Undoubtedly, the tree gives

a more simple and eye-catching overview on the rules, but also raises the question of how

to encode it binary? In our example we pick the level-order encoding that walks through

the leaves from the top layer to the bottom, and writes 1s for nodes holding value and 0s

otherwise (see the resultant bitvector underneath the tree). The encoding reflects the struc-

ture of the tree, and we store the symbols alongside in an array. This requires only 11 bits,

2

dest. prefix nh. LFA
- * 5 2
1,2 00* 2 5
5 0101 5 2
8 1* 5 2

(a) Forwarding table

5

5

2 5

0 1

0 1

1 0 1 1 1 0 0 0 0 0 0

(b) Prefix tree

Figure 2. Demonstration of forwarding table compression.

but to be able to answer queries on the encoded format some special operations are needed.

Since the layout of the structure is defined by the position of 0s and 1s in the bitvector, we

must support queries like “what is the position of the i-th 0?” or “return the number of

1s until the i-th position”. Researchers found that the bitvector can be freely compressed

as long as they are still able to provide fast answers for these types of queries. However,

space reduction and fast access to the data require several trade-offs. Consequently, the last

goal of the Dissertation is to propose a novel succinct data structure that offers noticeable

performance gain in queries compared to the state-of-the-art implementations while achieves

entropy-constrained space reduction on the storage size.

2 Research Goals

Latency sensitive media streams require ultra fast reaction to failures. The distributed

scheme of IGP networking prevents to heal the network fast enough, therefore a local and

proactive IPFRR scheme is necessary to be applied. The only IPFRR method that was

able to gain remarkable attention so far is the Loop-Free Alternates that does not provide

protection against all the failure cases. On the other hand, since LFA selection is already

available in major commercial router implementations [7, 8, 9], there is a huge potential for

the instant and seamless upgrade to a full IPFRR protected network once we can get rid

of this imperfect limitation of LFA. To improve the level of LFA protection in the network,

we take advantage of the dependency between the number of protected node pairs and the

layout of the topology.

Our first goal is to add SRG-disjoint complement edges to the network that render

available alternates to otherwise unprotected source-destination pairs. In particular, we

would like to know if the problem is solvable at all for any given topology, and if so, then

3

how to find the minimum set of complement edges that by adding to the network gives perfect

protection. Finally, it is also important to know how to generate the set of complement edges

that increases LFA coverage the most with a given upper limit on the number of new links

that can be added to the network. Second, we aim at the same target but this time without

touching the physical topology. We take advantage of virtualization techniques in order

to construct a protective overlay on top of the physical topology. Accordingly, we identify

and compare different cost assignment strategies on virtual links to be able to maximize the

number of protected node pairs with minimum number of virtual devices.

Besides networking reliability, the performance of information retrieval operations also

have great impact on the overall end-user experience. Therefore, our final goal is to present

a novel compression scheme, called R3D3 (“RRR–Developed Data structure for big Data”),

that by taking advantage of larger block sizes achieves better execution time compared

to the state-of-the-art solutions. The idea is to resolve one of the major shortcoming of

current compression methods: squeezing the index as well along the useful data. We call it

a doubly-opportunistic data structure that allows random access, rank and select queries

in O(log n) time.

3 Research Methodology

The methodology of the research follows the scheme where theoretical results are obtained

with analytical techniques and then get verified with numerical evaluations. In many cases

the complexity of the problems is nondeterministic polinomial (NP) that requires to for-

malize Integral Linear Programs to find the optimal solution. Since LP solvers usually run

with very poor performance, we propose approximation algorithms that perform close to the

optimum. The set of simulation tools that we developed to support our research is publicly

available on GitHub [10]. Most of the source files are written in C++ and they build on

open source libraries like LEMON [11], Gurobi [12] or the BOOST unit test framework [13].

We use a wide variety of sample networks as inputs. The collapsed AS1221, AS1755,

AS3257, AS3967 and AS6461 topologies are taken from the Rocketfuel dataset [14]. These

graphs come from real service provider networks and inferred link costs. We also use the

Abilene, Italy, NSF, Germany, AT&T and the extended German backbone (Germ 50) from

[15]. Further topologies are obtained from the Topology-Zoo project’s dataset [16] and we

set costs randomly wherever link costs were not available. We have removed all parallel

arcs and made links and costs symmetric.

For evaluating our novel compression scheme, R3D3, we took different sources of textual

4

data from the Pizza-Chili data set [17], the UCSC Genome database [18] and from The

Calgary Corpus set [19]. The input for evaluating R3D3 on IP forwarding tables (FIBs)

were taken from [20]. The source code is freely available at [10].

4 New Results

4.1 LFA Graph Extension under Correlated Failures

Thesis Group 1. [J3, J4, C2, C3] I have formally defined the corraleted failure tolerant

LFA graph extension problem, minLFASRG. I have proposed pre-processing and approxima-

tion algorithms with provable worst-case error bound, and I have provided extensive empiri-

cal evidence suggesting that the proposed algorithms are able to attain 100% LFA protection

by adding average 30% of the links already existing in the network in the link-protecting case

and average 60% in the node-protecting case.

As the title suggests the first goal is to smartly extend the network with the minimum

number of complement edges that increase LFA coverage the most. We also take into consid-

eration jointly failing links, as the logical representation of networks seen by the IP control

plane is often different from the physical layout.

4.1.1 Definition and Attributes

Let S = {(i, j) ∈ E} be an SRG containing a set of links (i, j). The number of links is at

most deg(i) − 1, but for S to be a local SRG we require that for any two (i, j) ∈ S and

(u, v) ∈ S: i = u. Note that SRGs in our model can, and usually are, asymmetric, that is,

(i, j) ∈ S does not imply (j, i) ∈ S. Now, for each directed arc (i, j) ∈ E we can create the

union of SRGs that include (i, j):

S(i, j) =
⋃

S:(i,j)∈S

S .

For some source s and destination d, let e be the default next-hop of s towards d. Then,

some neighbor t of s is an SRG-disjoint link-protecting LFA [6] for s to d if

Definition 1. For some source s, destination d, and default s− d next-hop e, a neighbor t

of s is an SRG-disjoint link-protecting LFA for s to d if

i) t 6= e,

ii) dist(t, d) < dist(t, s) + dist(s, d), and

5

a b

c

d

ef

1

1 2

4

10
2

1

1

S1

S2

Figure 3. Sample network with an additional link (marked with blue) for improving LFA
coverage.

iii) (s, t) /∈ S(s, e).

Let us overview these principles on the topology depicted on Fig. 3. The traffic from a

to d flows on the default shortest path a-b-c-d, and we assume the failure of link (a, b). Due

to the failure, the only remaining neighbor of a is f but the question if it is an LFA to d?

The answer is yes, since the shortest path f -e-d does not include the source node, a. The

node pair, b-c, is unprotected on the other hand against the failure of link (b, c), since the

only available neighbors of b, a and f , are upstream to the destination c. Now if we insert

the link (b, e) with sufficiently high link cost setting that prevents the traffic to flow back

to b, then e becomes an SRG-disjoint link-protecting b→ c LFA.

Similarly to link protection, there are LFAs that are able to protect against the failure

of the next-hop. For instance, node f is a link-protecting LFA for a→ d since the shortest-

path from f does not pass the source node, a. What is more, node f also protects against

the failure of the next-hop b as well, since the f → d shortest path does not traverse b

either. We call this property the SRG-disjoint node-protecting LFA condition.

Definition 2. For some source s, destination d, and default s− d next-hop e, a neighbor t

of s is an SRG-disjoint node-protecting LFA for s to d if

i) t 6= e,

ii) dist(t, d) < dist(t, s) + dist(s, d),

iii) dist(t, d) < dist(t, e) + dist(e, d), and

iv) (s, t) /∈ S(s, e).

What is left is to provide an adequate measure for the level of LFA protection of a

given network. Simply we use the ratio of protected versus unprotected node pairs that is

6

expressed as follows:

ηLP /NP(G) =
(s, d) pairs with link/node-protecting LFA

#all (s, d) pairs
. (1)

We call ηLP(G) and ηNP(G) link and node-protecting LFA coverage respectively. This value

depends on the layout of the topology, as well as the link cost settings and finally the density

of SRGs in the network. Our example on Fig. 3 holds ηLP(G) = 0.73 and ηNP(G) = 0.66.

We define the correlated failure tolerant LFA graph extension problem. Here, the task is

to augment a weighted graph with the minimum number of new links with properly selected

costs, so that LFA coverage becomes 100% and shortest paths remain in place. Formally:

Definition 3. Correlated failure tolerant LFA graph extension problem (minLFASRG):

Given a simple, weighted, symmetric digraph G(V,E), a set of SRGs S = {S}, and an

integer l, is there a symmetric arc set F ⊆ E with |F | ≤ l and properly chosen costs, so

that (i) for the SRG-disjoint link-protecting LFA coverage ηLP(G(V,E ∪ F)) = 1 and (ii)

the shortest paths in G(V,E) coincide with the shortest paths in G(V,E ∪ F)?

The above definition is straightforward to adapt to the the node-protecting case as well

by substituting ηLP(G) with ηNP(G). Note that newly inserted links are not part of any

existing SRGs and they never form new ones. This consideration comes from the fact that

the role of the additional links is to provide ultimate reliability in the network without

being affected by any other failure of network elements. Next, we define the complexity of

minLFASRG.

Thesis 1.1. The minLFASRG problem is NP-complete.

Asking for link extension that attains 100% failure coverage is often too ambitious goal.

Therefore, we also consider a relaxed version of the problem, called the correlated failure

tolerant LFA graph improvement problem, which asks for realizing the highest improvement

possible by adding only a limited number of new links.

Definition 4. Correlated failure tolerant LFA graph improvement problem: Given a sim-

ple, weighted, symmetric digraph G(V,E), a set of SRGs S = {S}, and two integers l and

k, is there a symmetric arc set F ⊆ E with |F | ≤ l and properly chosen costs, so that (i) at

least k source-destination pairs have an SRG-disjoint link-protecting LFA in (G(V,E ∪ F))

and (ii) the shortest paths in G(V,E) coincide with the shortest paths in G(V,E ∪ F)?

The LFA graph improvement problem is also NP-complete, because otherwise we could

solve minLFASRG with solving LFA graph improvement with setting k = |V 2| = n(n − 1).

7

Next, before jumping to the solution of the problem we examine if it is solvable at all for

any arbitrary input.

4.1.2 The pre-processing problem

LFA is based on the idea to pass packets to a neighbor that is not upstream towards the

destination. We take one step further by proposing minLFASRG that settles for any node

in the graph that is not upstream towards the destination that we can turn into an LFA by

adding a complement edge to it. Unfortunately, just like sometimes proper neighbors do

not exist, it is also possible that there isn’t a single node in the graph which would not be

upstream to a given destination.

Accordingly, for being able to provide an LFA from s to d, one must ensure that d is

accessible through at least two different shortest paths. The algorithm that makes each

destination accessible from two different neighbors is called pre-processing, and it either

inserts new links into the network or modifies the cost of existing links.

Definition 5. LFA graph extension pre-processing problem: Given a simple, weighted,

symmetric digraph G(V,E) containing S set of SRGs, find a modified graph G′(V,E′) and

a modified weight set, so that the minLFASRG is solvable over G′. Is there an E′ with the

minimum set of new and altered edges that results in a minimum difference of shortest paths

in G and G′?

We present a novel algorithm that exhibits considerable performance gain compared

to the best-known pre-processing scheme [21]. Let us denote the nodes need to be pre-

processed with Vp ∈ V , and the arcs Ep : ∀(i, j) ∈ E where i, j ∈ Vp. Hereby we get

Gp(Vp, Ep) as a subset of G(V,E). The following algorithm takes Gp(Vp, Ep) as an input,

and returns G′(V,E′) in four steps:

Algorithm 1 Improved pre-processing algorithm

1.) Find minimum edge cover in Gp(Vp, Ep).
2.) Pair remaining nodes of Vp and insert edges between them.
3.) Insert new edge between u, v ∈ Vp where u is the last not preprocessed node.
4.) Assign cost to the links selected above so that only shortest paths between v ∈ Vp

alter.

Thesis 1.2. The algorithm presented in Alg. 1 has polynomial running time and terminates

with optimal result.

8

4.1.3 Solving minLFASRG with the Bipartite Graph Model

Thesis 1.3. I have defined an O(n3) time construction that creates a proper bipartite graph

representation of minLFASRG in the node-protecting case.

The first step to solving the minLFASRG problem is to build a suitable model. As the

proof of Theorem 1.1 suggests the problem can be reduced to finding the minimum set cover

in bipartite graphs [22]. The idea is therefore to build a construction, a suitable bipartite

graph model, which then can be used to solve minLFASRG as well.

Let (si, di) : i ∈ 1, . . . , k be the set of unprotected source-destination pairs and let

{(uj , vj) : j ∈ 1, . . . , l} be the set of complement arcs E from which reverse arcs were

eliminated, i.e., the set contains either (uj , vj) or (vj , uj), but not both. Let G′(A,B, F) be

an undirected bipartite graph with node set A ∪ B and edge set F , where we add a node

ai ∈ A corresponding to each unprotected (si, di) : i ∈ 1, . . . , k and a node bj ∈ B for each

arc (uj , vj) : j ∈ 1, . . . , l, and we connect some ai ∈ A to some bj ∈ B in G′ if and only if arc

(uj , vj) or (vj , uj), when added with suitably large cost to G, would create an SRG-disjoint

link-protecting LFA to (si, di). This amounts to checking whether Definition 1 would hold

for (si, di) on the graph augmented with (uj , vj) and (vj , uj).

The bipartite graph G′(A,B, F) has O(n2) nodes and O(n4) arcs, and it can be built in

O(n2(n2 log n+ nm)) time as we need to perform an all-pairs-shortest path calculation for

each of the O(n2) complement arcs. Furthermore, the operation of adding a link (uj , vj)

to G corresponds in G′ to deleting the node bj and all its neighbors from A. Since we take

care of leaving the shortest paths in G intact, the resultant bipartite graph remains a valid

representation of the LFA graph extension problem on the augmented graph. What is left

is to solve the minimum set cover problem (minSC) over G′.

4.1.4 Algorithms

We have found in Thesis. 1.1 that the minLFASRG problem is NP-complete. This level

of complexity makes uncertain to obtain the optimal results in reasonable time for larger

networks. On the other hand, we recognize that finding minimum set cover in a bipartite

graph is equal to the problem of finding minimum vertex cover in hypergraphs [23] for which

several efficient heuristics are available from the literature.

The algorithm of Lovász-Johnson-Chvatal (LJC, [24] adds the highest degree node v ∈ B
to the cover Bc, v and its neighbors in A are deleted from G′ and the algorithm proceeds

to the next iteration. SBT was proposed in [25] to find an approximate cover that is, in

contrast to LJC, minimal in the sense of inclusion.

9

Algorithm 2 LJC

1: Bc ← ∅
2: while A 6= ∅ do
3: v ← argmaxb∈B deg(b)
4: Bc ← Bc ∪ {v}
5: A← A \ neigh(v)
6: B ← B \ {v}
7: end while

Algorithm 3 SBT

1: Bc ← ∅
2: while A 6= ∅ do
3: v ← argminb∈B deg(b)
4: if ∃n ∈ neigh(v) with deg(n) = 1
5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: end if
8: B ← B \ {v}
9: end while

Algorithm 4 RSBT

1: Bc ← ∅
2: while A 6= ∅ do
3: v ← argmaxb∈B deg(b)
4: if ∃n ∈ neigh(v) with deg(n) = 1
5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: end if
8: B ← B \ {v}
9: end while

Algorithm 5 MSBT

1: Bc ← ∅
2: while A 6= ∅
3: v ← argminb∈B deg(b)
4: if ∃n ∈ neigh(v) with deg(n) = 1
5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: else
8: for each a ∈ neigh(v)

[2] with deg(a) = 2
9: w ← u ∈ neigh(a) \ {v}

10: Bc ← Bc ∪ {w}
11: A← A \ neigh(w)
12: end for
13: end if
14: B ← B \ {v}
15: end while

Figure 4. Pseudo-codes of the LJC and SBT, RSBT and MSBT algorithms on graph
G′(A,B, F)

The Reverse SBT algorithm [23], as the name says, does the reverse of SBT in that

in every iteration it chooses the node with the highest degree instead of the smallest de-

gree. Consequently, the pseudo-code is the same as given in Algorithm 3 with the slight

modification that instead of line 3 we write v ← argmaxb∈B deg(b). The Modified SBT

algorithm [23] applies a small optimization step to SBT. Note that the SBT, RSBT and

MSBT algorithms generate covers that are minimal in the sense of inclusion.

4.1.5 Numerical Evaluations

Thesis 1.4. [J3, C2, C3] By extensive simulation studies, I have shown that the heuristics

10

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35

LJC
SBT

RSBT
MSBT

(a) Italy

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

LJC
SBT

RSBT
MSBT

(b) AS1239

Figure 5. LFA coverage in each iteration of different heuristics in the link-protecting case
for Italy, and node-protecting case for the AS1239 topology.

proposed from the literature are capable to attain perfect link-protecting LFA coverage in

small and middle size networks with adding only a 20–40% of the number of links, while to

achieve perfect node-protecting LFA coverage 50–70% of new links are needed, and in most

of the cases the overshoot to the optimum is at most 5–15%. I have found that the LJC and

MSBT heuristics are the most efficient amongst the proposed approximating algorithms.

We were curious as to how many new links are needed to achieve full LFA protection

with the different algorithms both for the link-protecting and the node-protecting cases.

We executed our measurements under different failure models. The topologies were chosen

so as to ensure that the ILP proposed in [21] still runs — at least in the non-SRG case —

and so we can compare the performance of the heuristics to each other as well as to the

optimum. Before actually running the algorithms, the improved pre-processing algorithm

was executed in order to ensure that the optimization problems were always solvable.

In the no-SRG case, all heuristics perform surprisingly well, only overshooting the op-

timum by at most 5-15% in most cases and even finding the optimum for some networks.

The MSBT algorithm is the clear winner both for link- and node-protection, with the SBT

and LJC algorithms also working reasonably, while RSBT is the worst performer.

Then, in the second round, local SRG sets were generated according to an SRG-density

parameter δ ∈ [0, 1], denoting the fraction of all possible adjacent dual-link sets to be

selected as local SRGs. For δ = 0 we add no SRGs at all (i.e., this case corresponds to

the single failure scenario), and for the settings δ = 0.1 (δ = 0.5, δ = 0.9, respectively),

we add every adjacent link pair with probability 0.1 (respectively 0.5 and 0.9) as an SRG.

Surprisingly, we find that the number of new links to be added does not grow at a similar

11

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20

LJC
SBT

RSBT
MSBT

(a) AT&T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

LJC
SBT

RSBT
MSBT

(b) Germany

Figure 6. LFA coverage in each iteration of different heuristics in the link-protecting case
for AT&T with SRG density δ = 0.5, and node-protecting case for Germany topology with
δ = 0.9

pace: in the link-protecting case for δ = 0.1 we need about 2-3 more links than in the non-

SRG case, while δ = 0.5 introduces about 3-4 more links and even in the case of very large

SRG density δ = 0.9 we only need about 7-12 links more (depending on the network size)

than when we do not have SRGs at all. We also observe that the rank of the algorithms,

in terms of efficiency, does not change under the SRG model: the MSBT algorithm is still

the most efficient. For further details, see the Dissertation.

4.2 Node Virtualization for IP Level Resilience

Thesis Group 2. I have defined the Resilient IP Overlay Problem, called RIOD, which

aims to provision a virtual overlay on top of IP networks in order to achieve perfect LFA

protection. I have shown that the complexity of the problem is NP-complete, and it is

always solvable for any given input. I have introduced an algorithmic framework that can

be parameterized either to return minimal number of virtual elements or to terminate in

polynomial time. By performing numerical simulations on a set of input networks, I have

found that on average a single virtual per physical router is enough to reach full protection.

Router virtualization is a technique used for sharing the resource of a single IP routing

device between multiple virtual instances [26]. Accordingly, virtual routers are indistin-

guishable from physical routers, each instance having its own forwarding and control planes,

which allows us to assign virtual routers as LFAs to routers that originally did not have

one.

12

a b

c

d

ef

d1b1

1

1 2

4

10
2

1

1

Figure 7. A sample network with a possible LFA loop (the shortest path is marked with
arrows in the virtual layer): suppose that b is about to send packets to f . If, for some reason,
link (b, f) goes down, b may choose to redirect its traffic to the LFA d1. However, said traffic
will never arrive to f as the d1 → f detour degrades into the LFA loop b− d1 − b1 − c− b.
Here, b1 also switches to its LFA c realizing that its link to f has disappeared due the
physical failure which node d1 is unaware of.

4.2.1 Definition and Attributes

First of all, we augment the LFA definition to the case of virtual layers.

Definition 6. For source s, destination d, and s→ d next-hop e, node n is an SRG-disjoint

link-protecting s→ d LFA if

i) n ∈ NV (s) and n 6= e, and

ii) dist(n, d) < dist(n, s) + dist(s, d), and

iii) (s, n) /∈ Ss,e (local SRG condition), and

iv) dist(n, d) < dist(n, si) + dist(si, d) for i = 1, . . . , ks.

We show an example in Fig. 7 for this problem where, after a failure, the traffic ends

up in an LFA loop. Therefore, to completely rule out this phenomena we require iv) by

prohibiting “cascade LFAs” in the virtual layer.

Proposition 1. In our model, a packet can be deflected to an LFA only at most once during

its journey from the source to the destination.

With these notations in place, we can now pose the Resilient IP Overlay Design (RIOD)

problem. Here, the task is to compute the overlay that maximizes LFA-coverage, using only

a given number of virtual routers.

Definition 7. RIOD(GS , c, U, k, ηmin): given a graph GS = (VS , ES), link costs c, node set

U ⊆ VS, and positive integer k, design a graph GV = (VV , EV) and link costs cV so that:

• VS ⊆ VV and virtual nodes provisioned only inside U ,

13

• ES ⊆ EV and virtual links are only between physically connected routers

(see Eq. (??)),

• shortest paths between node pairs in VS do not change

(the substrate is unaltered),

• |VV \ VS | ≤ k (no more than k virtual instances), and

• η(GV , cV) ≥ ηmin (the LFA coverage is a least ηmin).

4.2.2 The Solvability and Complexity of RIOD

First, we show that full LFA coverage can always be achieved by RIOD:

Thesis 2.1. [J2, C1] For a given 2-connected graph GS with positive costs c there always

exists an overlay GV and cost setting cV that solves RIOD(GS , c, VS ,∞) with η(GV , cV) = 1.

On the other hand we find the complexity intractable:

Thesis 2.2. [J2, C1] The RIOD(GS , c, U, k, ηmin) problem is NP-complete.

Unfortunately, today’s large size of IP backbones can easily trigger unsolvable ILP in-

stances. Correspondingly, we go on to design a heuristic algorithm that, depending on a

setting of a simple configuration parameter, is either optimal or it is guaranteed to termi-

nate in polynomial time, and it is possible to efficiently balance between the two according

to the preferences of the operator.

4.2.3 Heuristic Algorithms to the RIOD Problem

The main idea in our heuristics is to iteratively add new virtual nodes to the network until

full LFA coverage is achieved. Unfortunately, the case when a single node is added in each

step may stuck in a local maximum in certain cases.

Theorem 1. There exist cases where LFA coverage cannot be increased by adding only a

single virtual node.

Thesis 2.3. [J2, C1] I have defined an algorithmic framework that, for any given number of

virtual routers k, makes it possible to solve RIOD(G, c, U, k) with trading away the running

time of the algorithm for the LFA-coverage attained by adding at most k virtual routers to

the network. I have shown a construction that terminates at most O(n5) steps.

We propose to add increasing number of virtual nodes in each step that we call connected

l-sets.

14

Definition 8. For a graph GS, call a set of nodes in Ul ∈ VS a connected l-set if the

induced subgraph of GS spanned by Ul is connected and |Ul| = l. We denote the set of

virtual nodes on top of Ul with U ′l .

Then, we define the GLFAVirt(GS , cS , Ul, j) problem where the task is to set proper

link cost settings on the virtual links so that LFA-coverage is maximized.

Definition 9. GLFAVirt(GS , cS , Ul, j): Given a substrate GS(VS , ES) with link costs cS, a

positive integer j, and a connected l-set Ul ⊆ VS for any l ≥ 1 integer, inducing the virtual

topology GV (VV , EV) with a virtual nodes VV = VS ∪ U ′l , EV ⊆ ES ∪ {(v, u) : v ∈ U ′l , u ∈
NS(v)}, is there a cost setting cV on EV so that (i) the link costs and shortest paths in GS

do not change and (ii) # protected (s, d) pairs ≥ j, s, d ∈ VS × VS?

Our heuristic is then based on simply trying increasingly larger connected sets of virtual

nodes until LFA coverage eventually improves.

Algorithm 6 Greedy alg. for RIOD(GS , c, U,∞, ηmin)

1: while ηmin > η(GS , c) do
2: for each l = 1, . . . , k do
3: for each connected l-set Ul ⊆ U do
4: (cUl

, ηUl
)← solve GLFAVirt(GS , c, Ul)

5: end for
6: (U ′l , η

′)← choose Ul ∈ U that maximizes ηUl

7: if η′ > η then add U ′l to GV and set costs to cU ′
l

8: break
9: end if

10: end for
11: end while

In order to reduce the running time of Alg. 6 we introduce the concept of shortest path

slices.

Definition 10. For a graph GS, call a set of nodes in Ul ⊆ VS a shortest path slice of

rank l if the induced subgraph of GS spanned by Ul is created by shortest paths of GS and

|Ul| = l.

Besides, we speed up the LFA coverage calculation by selecting the subset of nodes that

can gain LFA by installing a specific virtual node set, Ul, in the network. To do so, we

keep track the set of eligible node-pairs L that can gain an LFA. Clearly, a virtual router

u′ can provide LFA only if it is a neighbour of the source node. Let LUl
⊆ L denote the set

of eligible node-pairs with source node adjacent with Ul, formally LUl
⊆ L|(s, d) ∈ L, s ∈

15

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15

L
F
A

C
ov

er
a
g
e

number of virtual nodes

Alg. 6 (Heu)

Alg. 6 (ILP)

(a) AS1755

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

L
F
A

C
ov

er
a
g
e

number of virtual nodes

Alg. 6 (Heu)

Alg. 6 (ILP)

(b) BICS

Figure 8. Progression of LFA coverage in small and middle-sized networks.

neigh(Ul). In other words, the new virtual nodes Ul can provide LFA to node pairs LUl
;

thus
|LUl
|

n(n−1) is the upper bound in the increase of η(G) after adding Ul. This measure helps

in selecting a proper virtual nodes Ul to add.

Accordingly, the theoretical worst-case complexity of Alg. 6 is O(n5) steps, however, in

practice we found the all-pairs-shortest path problem to dominate running time and hence

O(n2) to be a more reasonable complexity characterization.

4.2.4 Numerical Evaluations

Thesis 2.4. [J2, C1] I have presented empirical evaluation to show that the proposed ILP

adds only around 30% of the physical nodes to reach the 95% level of LFA protection.

At the same time, to reach perfect protection, provisioning 70% virtual nodes are enough.

On the other hand, when the goal is to minimize running time, I have found that the

heuristic reaches the same 95% coverage by adding 36% of the physical nodes on average.

Similarly, the heuristic requires 85% of the physical nodes to gain perfect protection that

is 15% approximation error. I have shown that there is only around 30% difference in the

length of recovery vs. default shortest paths.

We have provided an Integer Linear Program (ILP) [Dissertation, Section 3.3.4] that

serves as the baseline when evaluating the heuristic. Our major interest is to check whether

the heuristic performs close to the ILP, measured by the LFA coverage metric, η, as an

increasing number of virtual routers is added to the network. Obviously, we do not expect

it to outperform the optimal solution, but we hope that the performance is not prohibitively

worse and the improved running time makes up for the penalty.

16

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1.0

L
F
A

C
ov

er
a
g
e

proportion of virtual nodes

Alg. 6 (Heu)
Alg. 6 (ILP)

(a) Germany 50

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1.0 1.5 2.0

L
F
A

C
ov

er
a
g
e

proportion of virtual nodes

Alg. 6 (Heu)
Alg. 6 (ILP-1)

(b) Deltacom

Figure 9. Progression of LFA coverage in backbone topologies.

As an average the heuristic shows some 19% overhead compared to the the ILP when

adding |VS | virtual nodes, however it executes 10 times faster. The reason is that the

LFA coverage improvement has a logarithmic trend, so if the goal is to solely improve LFA

protection to a certain level then a couple of new nodes are usually enough. In contrast,

to achieve full protection, we need to provide alternate tunnels from all sources to all

destinations that can significantly increase the size of the virtual layer.

The logarithmic progression of the algorithms is clearly visible on Figs. 8-9. In the first

phase there is a steep increase in the LFA protection and the performance gap between the

algorithms is minimal. We also observe that in most steps the algorithms prefer to add a

single virtual node, however there are cases (see e.g., Fig. 8b) when both methods need a

tunnel to overcome a certain complex scenario. We also show a topology (Deltacom) where

the ILP with k = 3 does not perform in acceptable running time; this validates the need

for efficient heuristics. In this special case we relaxed k = 1 for the ILP and kept k = 3 for

the heuristic that revealed a 2-3% gain on the ILP side in the first phase, but it got stuck

after all, while the heuristic was still able to improve the coverage, see Fig. 9b. For further

results, see Section 3.3.5 of the Dissertation.

4.3 R3D3: A Doubly Opportunistic Data Structure

In parallel to make networks more robust against failures, we also undertook the task of

enhancing the efficiency of networking devices. To achieve this goal, we propose a novel

succinct data structure that allows fast operations right on the compressed form.

Thesis Group 3. I have proposed a novel succinct data structure that combines the storage

17

scheme of RRR and the Elias-Fano encoding scheme. I have verified with analytical methods

that the structure attains entropy-constrained size both on the data and the index, and I have

given the complexity of access, rank and select queries. My numerical evaluation suggests

that the data structure enables at most 25% faster operations at the price of a slight increase

(around 15%) in the storage size.

4.3.1 Definitions

Suppose that there is a set of possible events with the probabilities of occurrence p1, p2, . . . , pn.

We only know the probabilities, but nothing about the upcoming event at a certain point

of time. Now the question is how uncertain we are about the outcome, and how could we

measure it? The answer is called entropy (H):

H = −
n∑

i=1

pi log(pi) (2)

Note that in case of two possible events (e.g. a bit is set or zero), Eq. 4.3.1 becomes:

H0 = p log(
1

p
) + (1− p) log(

1

1− p
) (3)

We call a data structure succinct, if it can be stored on the optimal number of bits plus

some little “extra space”: opt + o(opt). A succinct encoding of a bitmap t of length n is

worst-case minimum n+o(n) bits, and it also implements rank and select queries in O(1)

time. But why do these operations matter?

Jacobson [27] showed a new encoding scheme for compressed trees and graphs that not

only consumes minimal space but also made it possible to do the traversal in constant time.

His idea was to encode the tree into a bitvector where moving downwards (e.g. left or right

child) requires a rank operation, while moving upwards (parent) goes with select. We

define those operations on a bitvector t as follows:

• rankq(t, i): return the number of occurrences of symbol q in t[1, i];

• selectq(t, i): return the position of the i-th occurrence of symbol q in t.

On Fig. 10, rank1(t, 8) = 2 gives the number of bits set to 1 up to and counting the 8-th

position, and select1(t, 2) = 7 indicates that the second set bit occurs at position 7.

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

Figure 10. A sample bitvector.

s0
b0

0 1 0 0 1

b1

1 0 1 1 0

b2

0 0 0 0 0

s1
b3

1 0 0 0 0

b4

0 1 1 0 0

b5

0 1 0 0 0

c o c o . . . c o c o c o . . .
indexes &
ranks

Figure 11. Sketch of the RRR encoding scheme.

RRR

The authors of [28], Raman, Raman and Rao, by building on the results of Brodnik and

Munro [29], and Pagh [30], developed a fully indexable dictionary (FID) that combines the

speed of hashing with the versatility of sorted arrays. It is a compressed bitvector represen-

tation that stores a bitmap t of length n on nH0 bits, plus the index on O(n log logn
logn) = o(n)

bits and implements access, rank and select queries in constant time.

The structure partitions t into blocks b1, b2, . . . of size b = logn
2 bits (see Fig. 11 for an

illustration). Each block bi is encoded with a pair (ci, oi), where ci = popcount(bi) is the

class of bi and oi is the offset that is used as an index to a prefab table.

Claude and Navarro proposed an optimized RRR in [31] and [32], which attains signif-

icant space reduction by substituting RRR’s universal block coding tables with on-the-fly

block decoding using combinatorial unranking [33], and removing the relative block pointers

/rank counters from the index and resorting to linear search inside superblocks.

The Elias–Fano coding scheme

Definition 11. For a given bitmap t of length n, we call the number of set bits in t,

i.e. rank1(n), the population count and we denote it with popcount(t).

The Elias–Fano coding scheme stores a bitvector t in nH0 + O(n) space and answers

select1 queries in O(1) time, with no support for rank and access. An alternative scheme

EF is available at [28, 34, 35] that attains nH0 +O(m) bits of space and needs O(m) time

for access, rank, and select, where m = popcount(t).

The EF scheme encodes the characteristic vector {x1, x2, . . . , xm} of t, where m =

19

bi

0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0.

.ci EF-coded block
RRR

indexes &
ranks

UBA 0 1 1 0 0 1
LBA 0 1 1 1 0 1

Figure 12. R3D3 encoding, with a single 16-bit block and the corresponding EF block-code.
The superblock pointers and block classes are encoded in the RRR index, while the blocks
are encoded with EF.

popcount(t) and xi = select1(t, i) : i ∈ {1, . . . ,m}, instead of t itself, using a technique

called MSB bucketing: group xis according to the most significant logm bits into buckets,

store the l = log n− logm = log n
m lower-order bits for each xi verbatim in an array (called

the Lower-bits Array, LBA), and store the significant bits as a sequence of unary encoded

gaps in another array (the Upper-bits Array, UBA). The UBA is constructed as follows: for

each bucket write down as many 1s as there are xis in the bucket followed by a 0.

4.4 R3D3

R3D3 combines the storage scheme of RRR [32] with the Elias–Fano encoding scheme to

create a very efficient bitmap encoding. The idea is to rely on RRR’s indexing scheme, as it

gives very fast access to block-codes and block-ranks, whereas the block-coding component

will be changed from combinatorial unranking to the EF scheme.

R3D3 adopts a scheme we call duplicate indexing ; it first invokes the RRR indexes to

find the starting position for each block and then looks up the UBA to index the relevant

entries in the LBA, and finally only a few LB entries need to be directly decoded.

Thesis 3.1. [J1] I have shown that R3D3 encodes a t bitvector of length n of arbitrarily

chosen block size, b, in

nH0 + np+
n

b
(2 + log b) bits. (4)

.

The query execution times for R3D3 are as follows: the time complexity for access(t, i)

is dominated by the linear search to locate the beginning of the EF-coded block containing

position i and identifying the class, which, similarly to RRR, is constrained by O(log n),

to which block-decoding gives another O(pb) steps. To reach parity with RRR, we can

20

 0

 100

 200

 300

 400

 500

 20 40 60 80 100 120

Ac
ce

ss
 ti

m
e

[C
PU

 c
yc

les
]

Block size [bits]

RRR
R3D3

Figure 13. Average time to access a ran-
dom position in RRR and EF block-codes
as the function of the block size, on random
bitmaps, p = 0.1.

 0
 10
 20
 30
 40
 50
 60
 70

 20 40 60 80 100 120

Si
ze

 [b
its

]

Block size [bits]

RRR
R3D3

Entropy bound

Figure 14. Average size of RRR and EF
block-codes and the zero-order entropy limit
as the function of the block size, on random
bitmaps, p = 0.1.

choose much larger block sizes (recall, in RRR the block size is b = O(log n), while in R3D3

pb = O(log n) and p < 1), which brings substantial space reduction as we need to store fewer

block class values in the index. The same holds for rank(t, i). As per select(t, i), first we

binary-search superblock and block ranks in O(log n) time and then decode the block, again

in expected O(pb) time. The total time for these queries is O(log n) + O(pb) = O(log n) if

pb = O(log n).

Thesis 3.2. [J1] I have given a block size setting for R3D3, pb = O(log n), that achieves

compression on the RRR indexing scheme by encoding t in

nH0 + nH0

(
1

2
+O

(
log log n

log n

))
(5)

bits and supports access, rank, and select operations in expected O(log n) time.

4.5 Experimental Results

Thesis 3.3. [J1] I have performed extensive numerical evaluations on a wide range of

synthetic and real data to compare the performance characteristics of R3D3 to the best-

known succinct compression schemes. I have found significant performance gap in the block

decoding components of RRR and R3D3 in favor of R3D3. Measurements on synthetic data

revealed 2 − 3% space reduction compared to RRR that brings no significant gain for rank

but improves 3 times the speed of select. Complex data structures having higher densities

makes R3D3 perform 25% better, but only at the price of a 10− 15% (up to 40%) increase

on the storage size.

Block-coding. The goal of our first experiment is to validate our choice for EF instead

21

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

 0.35 0.4 0.45

Ex
ec

ut
io

n
tim

e
[c

yc
le

s]

Size

Rank queries, bitmap density 5%, size 228

RRR_31
RRR_63

SD_Array
R3D3_128
R3D3_256

 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600

 0.55 0.6 0.65 0.7

Ex
ec

ut
io

n
tim

e
[c

yc
le

s]

Size

Rank queries, bitmap density 10%, size 228

RRR_31
RRR_63

SD_Array
R3D3_128
R3D3_256

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.34 0.36 0.38 0.4 0.42 0.44

Ex
ec

ut
io

n
tim

e
[c

yc
le

s]

Size

Select queries, bitmap density 5%, size 228

RRR_31
RRR_63

SD_Array
R3D3_128
R3D3_256

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0.5 0.55 0.6 0.65 0.7

Ex
ec

ut
io

n
tim

e
[c

yc
le

s]

Size

Select queries, bitmap density 10%, size 228

RRR_31
RRR_63

SD_Array
R3D3_128
R3D3_256

Figure 15. Average space–time efficiency of RRR and R3D3 on random rank and random
select queries, on random 228 bit long bitmaps.

of RRR’s combinatorial ranking/unranking scheme to encode blocks. Recall, this choice was

made because EF supports all basic block-operations in O(popcount(b)) time as opposed to

O(b) for RRR, where b is the block size, at the cost of slightly bigger block-codes (Fig. 14).

We observe that EF block-coding is indeed much less sensitive to the block size; while R3D3

needs only 3 times as much time to access a 128-bit block as for a 16-bit block (Fig. 13),

this factor is 25-fold with RRR.

Random synthetic bitmaps. For this experiment we again use random bitmaps as

input, but now we evaluate RRR and R3D3 in their entirety (not just the block-coding

component), the same way as in [32]. In particular, we measure the average execution time

of rank and select queries on the compressed data structures against the total compressed

encoding size. Our observation is that at low density, R3D3 256 needs roughly 2-3% less

space than RRR and attains similar performance in rank queries and up to 3 times bet-

ter performance on select queries. In addition, R3D3 exhibits 6-8% better compression

compared to the SD Array. For a higher 10% density R3D3 achieves around 15-20% per-

formance edge over RRR in rank queries and again multiple-times better execution times

on select.

Internet forwarding tables. We carried out measurements on forwarding tables, a

22

Table 1. RRR or R3D3 in forwarding table encoding: table sample name, number of
prefixes, and entropy bound as of [36]; and compressed size and average execution time of
random FIB lookups. Sizes are in Kbytes (KiB) and times in CPU cycles.

RRR 63 R3D3 128 R3D3 256

Name #Prefixes Entropy Size Lookup Size Lookup Size Lookup

hbone-szeged 453,685 70.1 63.1 21340 86.9 12670 93 11800

access d 403,245 149.1 83.5 18670 115.4 11000 124 10900

access v 2,970 1.08 4.6 20960 6.2 14800 6.5 11540

mobile 4,391 1.32 3.4 15400 3.7 10960 3.8 11580

hbone-vh1 453,741 222.6 160.8 20340 222 13850 238 13690

relatively new application of complex data structures [36]. The results for 3 real forwarding

table instances, downloaded from operational Internet routers, are given in Table 1. Here,

entropy is the tree entropy as of [36] and the compressed encodings were obtained by the

XBW data structure, instantiated over RRR- and R3D3-coded bitmaps with different block

sizes. Again, we see a modest (up to 40%) size increase with R3D3, at the cost of close to

twice the lookup performance. Our experiments show that most benefits already manifest

themselves at the block size of 128 and 256 bits with R3D3.

5 Applicapility of New Results

In the Dissertation we introduced theoretical and experimental results to the fields of net-

work reliability and data compression. In the first part of the Dissertation, we have pointed

out that the only commercially available IPFRR scheme, LFA, suffers from the drawback

that the level of protection inherently depends on the layout of the given topology. To

overcome this limitation, we presented two strategies for network augmentation (Chapter

2-3).

First, our results on the graph extension problem contribute to an internal tool developed

by Ericsson Research that is capable to analyze and optimize LFA characteristics in operator

networks. Besides, our findings became integrated into a few scientific reports published by

IEEE [37] and FIA [38]. For details see Section 2.4 of the Dissertation. Second, we showed

in Chapter 3 how to achieve perfect LFA coverage without touching the physical topology.

Based on our results, Tapolcai showed a construction in [39] that achieves full LFA coverage

by adding limited number of virtual nodes. In addition, our results on router virtualization

also appear in [37] in the context of Virtual Routing Overlays that is concluded to finally

solve multiple problems of inherent failure isolation.

23

Last but not least, we turned our attention to compressed data structures and we intro-

duced R3D3 for supporting time-sensitive data processing. We gave an overview in Section

4.3 on the possible fields of applications such as text-indexing, genome compression, data

mining, databases and FIB compression. We believe that our results can directly be used

in communicating networks with the purpose of making them more reliable and efficient.

24

Publications

Journal Papers

[J1] M. Nagy, J. Tapolcai and G. Rétvári. “R3D3: A Doubly Opportunistic Data Struc-

ture for Compressing and Indexing Massive Data”. Infocommunications Journal, pp.

58-66., 2019. (4/2 = 2)

[J2] M. Nagy, J. Tapolcai and G. Rétvári. “Node Virtualization for IP Level Resilience”.

IEEE/ACM Transaction on Networking, 2018. (6/2 = 3)

[J3] M. Nagy, J. Tapolcai and G. Rétvári. “Optimization Methods for Improving IP-level

Fast Protection for Local Shared Risk Groups with Loop-Free Alternates”. Telecom-

munication Systems 56, pp. 103-119., 2014. (6/2 = 3)

[J4] L. Csikor, M. Nagy and G. Rétvári. “Network Optimization Techniques for Improving

Fast IP-level Resilience with Loop-Free Alternates”. Infocommunications Journal, pp.

2-10., 2012. (4/2 = 2)

Conference Papers

[C1] M. Nagy, J. Tapolcai and G. Rétvári. “On the Design of Resilient IP Overlays”. In

Proc., DRCN 2014, Ghent, Belgium, 1-3. April 2014. (3/2 = 1.5)

[C2] M. Nagy and G. Rétvári. “IP hálózatok védelmének optimalitása többszörös hibák

esetére”. In Proc., Mesterpróba, Budapest, Hungary, May 2012. (1/1 = 1)

[C3] M. Nagy and G. Rétvári. “An evaluation of approximate network optimization meth-

ods for improving IP-level fast protection with Loop-Free Alternates”. In Proc., RNDM

2011, Budapest, Hungary, September 2011. (3/1 = 3)

25

Other Publications

[C4] M. Szalay and M. Nagy and D. Géhberger and Z. Kiss and P. Mátray and F. Németh

and G. Pongrácz and G. Rétvári and L. Toka. “Industrial-scale Stateless Network

Functions”. In Proc., IEEE Cloud, Milan, Italy, 2019. (3/8 = 0.37)

Patents

[P1] M. Nagy and D. Fiedler and D. Géhberger and P. Mátray and G. Németh and

B. Pinczel “Fast session restoration for latency sensitive middleboxes”. International

Application No. PCT/IB2019/060031, TELEFONAKTIEBOLAGET LM ERICSSON,

2018. (2/6 = 0.33)

[P2] M. Nagy and D. Fiedler and D. Géhberger and P. Mátray and G. Németh and B.

Pinczel and A. Császár “N+1 redundancy for virtualized services with low latency

failover”. International Application No. PCT/IB2019/060037 , TELEFONAKTIEBO-

LAGET LM ERICSSON, 2018. (2/7 = 0.28)

Total publication score: 16.48

26

Bibliography

[1] L. Humphreys, T. von Pape, and V. Karnowski, “Evolving Mobile Media: Uses and

Conceptualizations of the Mobile Internet,” Journal of Computer-Mediated Communi-

cation, 2013.

[2] J. Moy, “Ospf version 2,” RFC 2328, Apr 1998.

[3] D. Oran, “Osi is-is intra-domain routing protocol,” RFC 1142, Febr 1990.

[4] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot, “Analysis of

link failures in an ip backbone,” in ACM SIGCOMM Internet Measurement Workshop,

2002, pp. 237–242.

[5] M. Shand and S. Bryant, “IP Fast Reroute framework,” RFC 5714, Jan 2010.

[6] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-Free Alternates,”

RFC 5286, 2008.

[7] Cisco Systems, “Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router,

Release 4.2,” 2012.

[8] Hewlett-Packard, “HP 6600 Router Series: QuickSpecs,” 2008, available online: http:

//h18000.www1.hp.com/products/quickspecs/13811 na/13811 na.PDF.

[9] Juniper Networks, “JUNOS 12.3 Routing protocols configuration guide,” 2012.

[10] M. Nagy, “Github homepage,” https://nmate.github.io, 2019.

[11] “LEMON – Library for Efficient Modeling and Optimization in Networks,” http://

lemon.cs.elte.hu/, 2014.

[12] “GUROBI – Linear Programming Solver,” http://www.gurobi.com, 2018.

[13] “BOOST – C++ Libraries,” http://www.boost.org, 2018.

27

http://h18000.www1.hp.com/products/quickspecs/13811_na/13811_na.PDF
http://h18000.www1.hp.com/products/quickspecs/13811_na/13811_na.PDF
https://nmate.github.io
http://lemon.cs.elte.hu/
http://lemon.cs.elte.hu/
http://www.gurobi.com
http://www.boost.org

[14] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link weights using

end-to-end measurements,” in ACM IMC, 2002, pp. 231–236.

[15] SNDlib, “Survivable fixed telecommunication network design library,” http://sndlib.

zib.de.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The Internet

Topology Zoo,” http://www.topology-zoo.org.

[17] P. Ferragina, G. Navarro, “Pizza & Chili Corpus,” http://pizzachili.dcc.uchile.cl/.

[18] UCSC Genome Bioinformatics, “The UCSC Genome Browser,” http://hgdownload.

cse.ucsc.edu/downloads.html.

[19] I. Witten, T. Bell, and J. Cleary, “The Calgary Corpus,” 1987, http://corpus.

canterbury.ac.nz/descriptions/#calgary.

[20] G. Rétvári and A. Kör osi and J. Tapolcai, “The Internet Routing Entry Monitor,”

http://lendulet.tmit.bme.hu/fib comp/.

[21] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP Fast ReRoute: Loop Free

Alternates revisited,” in INFOCOM 2011, 2011, pp. 2948–2956.

[22] M. Garey, , and D. Johnson, Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1990.

[23] B. Mazbic-Kulma and K. Sep, “Some approximation algorithms for minimum vertex

cover in a hypergraph,” in Computer Recognition Systems 2, ser. Advances in Soft

Computing, M. Kurzynski, E. Puchala, M. Wozniak, and A. Zolnierek, Eds. Springer

Berlin / Heidelberg, 2007, vol. 45, pp. 250–257.

[24] L. Lovász, “On the ratio of optimal integral and fractional covers,” Discrete Mathe-

matics, vol. 13, no. 4, pp. 383–390, 1975.

[25] P. Kulaga, P. Sapiecha, and K. Sej, “Approximation Algorithm for the Argument

Reduction Problem,” in Computer recognition systems: proceedings of the 4th Inter-

national Conference on Computer Recognition Systems, CORES’05. Springer Verlag,

2005, p. 243.

[26] Cisco, “Cisco catalyst 4500 series switch software configuration guide, 15.0,” 2016.

28

http://sndlib.zib.de
http://sndlib.zib.de
http://www.topology-zoo.org
http://pizzachili.dcc.uchile.cl/
http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://lendulet.tmit.bme.hu/fib_comp/

[27] G. Jacobson, “Space-efficient static trees and graphs,” in Proceedings of the 30th Annual

Symposium on Foundations of Computer Science, ser. FOCS ’89, 1989, pp. 549–554.

[28] V. R. R. Raman and S. R. Satti, “Succinct indexable dictionaries with applications to

encoding k-ary trees, prefix sums and multisets.” ACM Transactions on Algorithms,

vol. 3(4), 2007.

[29] A. Brodnik and I. Munro, “Membership in constant time and almost-minimum space,”

Journal on Computing, vol. 28, no. 5, pp. 1627–1640, 1999.

[30] R. Pagh, “Low redundancy in static dictionaries with constant query time,” Journal

on Computing, vol. 31, no. 2, pp. 353–363, 2001.

[31] F. Claude and G. Navarro, “Practical rank/select queries over arbitrary sequences,” in

Proc. 15th International Symposium on String Processing and Information Retrieval

(SPIRE), ser. LNCS 5280. Springer, 2008, pp. 176–187.

[32] G. Navarro and E. Providel, Fast, Small, Simple Rank/Select on Bitmaps. Springer

Berlin Heidelberg, 2012, pp. 295–306.

[33] D. E. Knuth, The Art of Computer Programming: Combinatorial Algorithms, ser.

Series in Computer Science. Addison-Wesley, 2011.

[34] D. Okanohara and K. Sadakane, “Practical entropy-compressed rank/select dictio-

nary,” in Proceedings of the Meeting on Algorithm Engineering & Expermiments, 2007,

pp. 60–70.

[35] S. Gog, “Compact and succinct data structures: From theory to practice,” available

online: http://es.csiro.au/ir-and-friends/20131111/anu gog seminar.pdf, 2015.

[36] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Compressing IP

forwarding tables: towards entropy bounds and beyond,” in ACM SIGCOMM, 2013,

paper http://lendulet.tmit.bme.hu/∼retvari/publications/sigcomm 2013 tech rep.pdf,

pp. 111–122.

[37] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, “Fast recovery mecha-

nisms in the data plane,” in IEEE Communications Surveys and Tutorials, 2020.

[38] L. Csikor, G. Rétvári, and J. Tapolcai, “High availability in the Future Internet,” in

The Future Internet, ser. Lecture Notes in Computer Science, A. Galis and A. Gavras,

Eds. Springer Berlin Heidelberg, 2013, vol. 7858, pp. 64–76.

29

http://es.csiro.au/ir-and-friends/20131111/anu_gog_seminar.pdf
http://lendulet.tmit.bme.hu/~retvari/publications/sigcomm_2013_tech_rep.pdf

[39] M. Nagy, J. Tapolcai, and G. Rétvári, “Node virtualization for IP level resilience,”

IEEE/ACM Transactions on Networking, pp. 1–14, 2018.

30

	Introduction
	Research Goals
	Research Methodology
	New Results
	LFA Graph Extension under Correlated Failures
	Definition and Attributes
	The pre-processing problem
	Solving `39`42`"613A``45`47`"603AminLFASRG with the Bipartite Graph Model
	Algorithms
	Numerical Evaluations

	Node Virtualization for IP Level Resilience
	Definition and Attributes
	The Solvability and Complexity of `39`42`"613A``45`47`"603ARIOD
	Heuristic Algorithms to the `39`42`"613A``45`47`"603ARIOD Problem
	Numerical Evaluations

	R3D3: A Doubly Opportunistic Data Structure
	Definitions

	R3D3
	Experimental Results

	Applicapility of New Results
	Publications

