
Industrial-scale Stateless Network Functions
Márk Szalay∗†, Máté Nagy†, Dániel Géhberger†, Zoltán Kiss†, Péter Mátray†,

Felicián Németh∗, Gergely Pongrácz†, Gábor Rétvári∗‡, László Toka∗‡
∗Budapest University of Technology and Economics, Hungary

†Ericsson, Hungary
‡MTA-BME Information Systems Research Group

Abstract—While the industry is still struggling to embrace the
network function virtualization paradigm, recently a novel ap-
proach has appeared with the promise of improving the state-of-
the-art: stateless virtualized network functions. Rooted in cloud-
native computing, this design outsources the state embedded in
virtual network functions to a dedicated “state storage” layer,
facilitating elastic scaling and resiliency. While related work
mostly focuses on performance, we in this paper pinpoint all other
factors that weigh in when it comes to deploying the stateless
design in a carrier-grade operator network. Among those we
argue that reliability and flexibility are key, and we propose a
system design that can be adapted to any telco use case without
the need for complex coordination among the network control,
the stateless network functions, and the state storage backend.
Then, in extensive evaluations on synthetic use cases we show that
the additional flexibility provided by our design does not come
at a performance penalty; in fact, in certain cases our design
outperforms the state-of-the-art significantly. Finally, we present
what to our knowledge is the first product-phase realization of
the stateless paradigm, an operational virtualized IP Multimedia
Subsystem that can restore the live call records of thousands
of mobile subscribers under a couple of seconds with half the
resources required by a traditional “stateful” design.

Index Terms—Network Function Virtualization, Telco Indus-
try, Stateless Network Function, Distributed Key-Value Store

I. INTRODUCTION

Virtualization techniques bring abrupt changes to how we
design telco systems. Network Function Virtualization (NFV)
offers the opportunity to move the software running on tradi-
tionally expensive custom physical nodes into the cheap multi-
purpose cloud, resulting in fast configuration and development
cycles and cost-efficient scalability [1]–[3]. The modern NFV
ecosystem is fundamentally stateless [4]–[7]; if the virtual
Network Functions (NFs) do not maintain persistent state on
their own, then scale-in/scale-out, and even fail-over events,
are less complex to handle, improving overall elasticity, scal-
ability, resiliency and performance [7]. In this paper, we take
a new look at the stateless NF paradigm and we re-evaluate
its applicability in large-scale operational telco networks.

Taken from cloud-native designs [8], the stateless NF
paradigm calls for the complete decoupling of NF processing,
responsible for the forwarding, modification, and filtering
of network packets, and the associated state, involving all
persistent and semi-persistent information maintained in a NF
that is necessary to perform the required processing on the
network traffic traversing the NF [4], [5]. Such state may
include address mappings in a network address translator
(NAT), or connection tracking information maintained in a

stateful firewall [9]. The main motivation for factoring this
state out of NFs is scalability and resiliency. Consider the case
of a NAT, for example: if address mappings are scattered in the
address space of the NAT NF, then upon a scale-out event the
address mappings to be handled by the new NF instance need
to be tediously removed from the old instance and conveyed
to the new instance. Meanwhile, a seamless flow of live traffic
and complete synchrony of the NFs must be guaranteed, which
requires complex control and coordination of the components
involved, like the NFs themselves, the load-balancer, and the
SDN controller [1], [3]. If, however, no persistent state is
embedded in an NF but rather state is maintained by a separate
storage backend layer, then scale-out is seamless as the state
needed by the new NF instance is readily available there.

Of course, eliminating the need for explicit state manage-
ment within NFs does not come for free; the downside is the
complexity faced by all distributed systems: performance and
data consistency [4]–[7]. These difficulties are especially com-
pelling in telco deployments, which pose their own require-
ments [10], [11]. A carrier-grade telco NF ecosystem must
provide extreme steady-state performance and provide strict
Service-Level Objectives (SLOs) simultaneously, at the order
of hundreds of millions of packets per second throughput and
1–10 ms delay budget [12]. This requires extreme scale and
elasticity in terms of the sheer size of the deployments, NFs,
and state information; in Section IV we show a virtualized
IP Multimedia Subsystem (vIMS) solution handling the live
state of possibly millions of mobile subscribers. Carrier-grade
NF systems pose tough resiliency requirements; staying with
the above example the vIMS should never drop calls, lose
subscriber information, or miss handover events, not even in
the case when one or more NFs, possibly managing tens of
thousands of subscriber calls, fails. Finally, typical cloud-based
telco deployments [2] are massively heterogeneous and multi-
party and, correspondingly, must expose simple APIs and a
modular system design to third-party developers.

In summary, in order to gain traction in the telco world
the stateless NF paradigm must deliver high performance in
normal operation, seamless scalability and ultra-high relia-
bility during scale-in/scale-out and under failures, and finally
a modular and use-case-agnostic design. In this paper, we
show that existing stateless NF designs, mostly originating in
academia, fall short in some way or another in the face of
industry-scale telco requirements.

We argue that the state management problem posed by

1



the stateless NFV setting is complex enough to warrant the
introduction of a separate state-management plane, next to
(or below) the forwarding plane. For this purpose, we adopt
DAL, a powerful distributed shared-memory system [6] from
the literature. Our contributions are, accordingly

(i) the design, construction, implementation and evaluation
of an entire telco-grade stateless NF ecosystem on top of
the storage layer DAL;

(ii) an extensive evaluation on various use cases to compare
the features and performance of our stateless NF design
with the state-of-the-art [4]–[7];

(iii) the first production-quality industrial-scale stateless telco
NF system, a virtual IP Multimedia Subsystem (vIMS)
that provides resiliency against NF instance failures
within a similar time budget as the traditional 1+1 pro-
tection scheme at half the costs. Our vIMS is expected
to go into production in early 2019.

The paper is organized as follows. In Section II we provide a
deep-dive into the stateless data plane paradigm by describing
the design principles, the necessary data store features driven
by the telco-grade requirements, and the shortcomings of
the existing solutions. In Section III we present DAL, our
proposal for the state plane. Then, in Section IV we evaluate
the performance of DAL in a comprehensive set of network
functions. First we measure throughput and packet latency in
steady-state and during the transitional phases of scale-out/
scale-in events in two applications with read-heavy and write-
heavy access patterns. Second, as an illustrative feasibility
proof, we present and evaluate a fully fledged telco vIMS,
in which our stateless NF design reaches significant resource
savings compared to the traditional 1+1 protection scheme.
Finally we conclude the paper in Section V.

II. CONCEPT OF STATELESS: THE ROAD TO ADOPTION

A. Network Functions and Embedded State

Contrary to traditional packet processing deployments,
which typically targeted only a specific protocol layer, like
Ethernet or IP, and applied simple processing patterns to pack-
ets, like forward on a port or drop, modern telco pipelines, like
Broadband Network Gateways or Mobile Gateways [10], [11],
proliferate in complex middlebox functionality [2], [9]. Such
functionality involves the flexible and efficient filtering, moni-
toring, modification, or redirection of network traffic, allowing
telcos and operators to provide “value-added” services on top
of the plain old carrier service, like firewalls and intrusion
detection systems for improved security, NATs for IP address
sharing and isolation, video and audio transcoders for media-
agnostic connectivity, and load balancers for parallelization
and resource pooling. Moreover, today’s telco middlebox de-
ployments tend to get more and more complex, e.g., virtualized
telco systems handle millions of signaling events per second
and industrial IoT and cloud-controlled collaborative systems
run at an even larger scale [2], and pose previously unseen
throughput and latency SLOs.

The skyrocketing complexity calls for the softwarization
of NFs, which would allow to elastically scale, both hori-
zontally and vertically, on demand, to quickly recover from
failures, to mix multiple vendors’ NFs in a single deployment
(vendor-heterogeneity), and to leverage contemporary cloud-
native facilities to outsource the NF infrastructure manage-
ment [2]. Unfortunately, softwarization makes fulfilling SLOs
much more difficult, since most software frameworks that
NFs run on top of, like the Linux kernel or the OpenStack
network and compute virtualization platform, lack the real-
time capabilities of hardware appliances. The most difficult
problem arises with operational state embedded in NFs, like
address mappings in a NAT, connection tracking information
in a stateful firewall, or server associations in a stateful load
balancer. Such state is typically created in NFs in response to
certain data-plane events, like the creation of a new flow by the
reception of a TCP syn packet, or after certain signaling events
received from the control plane, like a subscriber performing a
handover in a mobile core device. Locking state into a single
NF instance curtains scaling and elasticity, since state must
be tediously migrated through different NF instances using
possibly piecemeal NF-specific methods, and harms resilience,
in that restoration of a failed NF will need to re-establish all the
embedded state of the failed NF instance in a timely manner.

B. Stateless Network Functions

The typical way to tackle embedded state in cloud-native
computing is the refactoring of the processing functionality
by the externalization of all persistent state [8]. This involves
decoupling the processing logic from state storage in network
functions and placing the state in a separate layer, typically a
distributed key-value store, that is solely responsible for the
maintenance of application state and offering it for access and
modification to interested NFs. This design pattern, where
all embedded state is offloaded to a dedicated state storage
backend, is called Stateless Network Functions [4]–[7].

Stateless NFs bring lots of operational benefits. First, re-
silience/restoration is simpler with the stateless design since
the new NF instance will have instantaneous access to all the
state needed; second, elasticity is improved, e.g., NFs can be
seamlessly scaled out and new instances will be immediately
capable to process traffic since, again, all state is available
in the storage backend; and finally resource-pooling/load-
balancing will also benefit since the load balancer will not
be reliant on the affinity of traffic flows to NF instances (so
that packets will always “meet” the state that was left behind
for them by earlier packets), but rather packets/flows can be
freely spread across workers. Contrast this with a traditional
“stateful” design, e.g., for a new firewall NF instance to handle
a packet that is part of an already established connection whose
conntrack state has been created earlier at another NF instance,
it first needs to access and download the corresponding state
from the old NF instance, provided it is still available, or
recreate it from logs; otherwise, the packet will be dropped
because a lookup will fail. In a stateless NF, said conntrack
state is readily available in the state storage backend and the

2



new instance can immediately process packets after retrieving
the state from the backend.

C. Taxonomies for Stateless Network Functions

Below, we categorize existing stateless designs along vari-
ous important problem dimensions.

1) Deployment Model: Our first categorization dimension
considers the way in which worker nodes that process packets
and the storage servers that maintain state are deployed and
associated with each other.
Local-only model. Early NF frameworks assumed that NF
state is per-flow and, correspondingly, it is only accessed
locally, of course assuming a certain traffic load balancing
scheme that ensures flow–NF affinity [1], [3]. For example,
TCP connection state is per-flow. However, a global active-
flow counter will need remote access since it may be modified
from multiple NF instances. Accordingly, these frameworks do
not accommodate NFs with shared state.
Remote-only model. In this model all network state is accessed
via a remote backing store [4], [5]. While maximally flexible
and readily provides shared state, this approach comes at the
cost of steady-state performance: accessing remote state in
the fast packet-processing path inflates packet latency and
consumes network bandwidth for I/O. It has been reported [7]
that, relative to an NF that uses local state only, a remote-only
approach can lead to a 2–3 times degradation in throughput
and an orders-of-magnitude increase in latency. Crucially, the
penalty grows with the number of state accesses, which can
reach high numbers in typical NFs [9].
Local+remote model. In this model, all NF state is fixed
at compile time to be either local or remote and accessed
accordingly in operation: per-flow state is accessed locally,
while shared state is handled remotely [13], [14]. With ade-
quate hinting on each state’s access pattern, this model can be
very efficient; however, scaling events that require replication
of local state usually result in “stop the world” behavior,
leading to long pause times during which both old and new
NF instances stop processing packets. This model is complex
to implement and to deploy due to tight coordination among
the SDN controller, the NF controller, and the load-balancer.
Distributed shared object (DSO) model. In this model, NF
state is distributed among NFs and can be accessed by any NF,
which removes the long pause times with the “local+remote”
model [7]. In addition, all state variables reside in a single
shared address space and the state management framework
transparently resolves all state accesses, therefore the NF
developer does not need to distinguish between local and
remote state. Accordingly, the API is much simpler. While
extremely flexible and easy to develop against, experience
suggests that this model is the most difficult to support
efficiently in implementations: we show in Section IV that
the only publicly available DSO prototype, S6 [7], does not
implement adaptive state migration at this point and it lacks
efficient remote state handling; correspondingly, it becomes
prohibitively slow in certain carrier-grade telco access patterns.

Takeaway 1: Different industrial use cases may require
different deployment models and an industrial-scale stateless
NF framework should support all deployment models; e.g., the
“local-only” model is undoubtedly the fastest possible mode in
steady state, so in use cases that admit this model, like a “soft”
flow packet counter, the local-only mode should be supported
out of the box, and similarly for the rest of the models.

2) Access Pattern Hinting: Next, we categorize existing
work based on whether the NF programmer needs domain-
specific knowledge to “hint” the state-backend regarding the
typical access pattern of externalized state instances.
Hinted mode. The “local+remote” model requires the pro-
grammer to specify at compile time whether a particular state
instance is per-flow, in which case the state storage backend
will optimize state placement for local access, or “remote”,
in which case the state instance may be remotely modified
from multiple NF instances. This requires domain-specific
knowledge that may not necessarily be available during NF
development and restricts NF state to be static in nature, i.e.,
a state cannot change access pattern during its lifetime.
Unhinted mode. In this mode there is no distinction between
local and remote state, no proactive migration is required
during scaling events, and state migration no longer needs
tight coordination with load-balancing/resource pooling. The
outcome is reduced system complexity and simpler NF devel-
opment. This model trivially works in the “local-only” model
(where there is no “remote state” per se) and in the “remote
mode” (where there is no “local state”); DSOs should also
support this model out of the box but, as we show in Section
IV, implementations currently do not follow theory.

Takeaway 2: An industrial-scale stateless NF framework
may default to an unhinted mode provided it will adaptively
exploit the performance optimization opportunities offered by
the hinted mode, otherwise it must provide both modes.

In the next section we show how DAL, the state layer we
adopt, supports extremely efficient unhinted state management
using intelligent adaptive state placement; accordingly, our
stateless design will default to the unhinted mode.

3) State Management: Next, we consider whether moving/
migrating state from one backend server to the other, e.g.,
upon scale-in/scale-out event or during restoration, needs a
dedicated migration manager or happens spontaneously.
Managed state migration. In this mode, moving state from
one backend server to the other in order to improve access
locality, i.e., turning remote accesses local, requires an explicit
controller to manage the whole process. Unfortunately, the
interaction between NFs and a dedicated manager makes the
system complex, breaks modularity, and introduces unwanted
dependencies inside the workload. [7] adopts this model.
Unmanaged/adaptive state migration. In this mode, moving of
state “ownership” between backend servers occurs adaptively,
in response to a change in access patterns as detected by the
storage backend. Correspondingly, state is always moved as
close as possible to the NFs that frequently access it; for
instance the S6 framework contains this model [7] but, unfor-

3



tunately, the current implementation lacks adequate support,
as we show in Section IV.

Takeaway 3: For maximal flexibility, the stateless NF frame-
work must support the unmanaged mode.

So far, no prior work that would support this mode has
appeared; we introduce one in the next section.

4) State Representation: The final categorization dimension
we consider is the type and nature of NF-specific persistent
state that is offloaded to the storage backend.
Explicit state representation. In this model, state variables, like
NAT mappings, counters, etc., are explicitly represented in the
state storage backend. Early solutions following this model in-
volve pico-replication [15], a framework for frequently check-
pointing the state in a NF such that upon failure a new instance
can be launched and the state restored instantaneously; recent
realizations all adopted this model due to its simplicity and
easy API [4]–[7], [14].
Implicit state representation. This model works through “input
logging”, whereby input events to the NF instances are logged
in a separate component and state is restored by replaying the
input to the new instances. In stateless designs targeting data-
plane state the typical input to be logged is every packet that
spawns a state change (e.g., a TCP syn packet that creates
a new mapping in a NAT [16]), while in NFs that interact
with the control plane the input to be logged is every control
message that was received by the NF instance.

Takeaway 4: An industrial-scale stateless NF framework
should support both implicit and explicit representation; the
explicit mode is much simpler to code against, while the
implicit model may allow the timely restoration of possibly
immense sized state.

In Section IV, we show how our stateless NF framework
benefits from supporting both modes: using the explicit mode
we can seamlessly scale essentially any stateful data-plane
function, while the implicit mode will be indispensable when
we restore the full call records of thousands of subscribers in a
mobile core device, a massive scale that would be impossible
to support in the explicit mode (see also [9]).

D. Contributions for Industrial Adoption

We argue that in order to gain industry acceptance, a
stateless NF framework must support all deployment, state
management and state representation models. In addition,
it should provide efficient implementation for the unhinted
mode. Adopting the “local-only”, the “remote”, and the “re-
mote+local” deployment models maximizes performance in
steady state under different use cases while the DSO model
maximizes deployment flexibility; supporting the unhinted
mode makes the stateless NF design use-case agnostic and
allows fast and seamless scale-in/scale-out and restoration;
making explicit as well as implicit state representation avail-
able to developers renders it possible to match the state rep-
resentation model with particular use cases, resulting vendor-
agnostic, heterogeneous deployments; and finally flexible state
management removes dependency on the load-balancer and

resource-pooling framework, allowing maximal modulariza-
tion and easy third-party development model. In the rest of
the paper, we provide such a design.

III. DAL: DESIGN AND IMPLEMENTATION

We present DAL, the state-storage backend we adopted for
our carrier-grade stateless NF framework. First, we summarize
the original design from [6] and then we describe how DAL
supports our carrier-grade stateless NF framework.

A. Architecture

From the viewpoint of a NF, externalized state can be
accessed with the best possible performance if it is co-located.
Achieving co-location might be relatively simple with steady
configurations, however cloud based deployments must adapt
continuously to the changing environment and to load fluctu-
ation. DAL is a distributed shared memory system, designed
from the ground up to achieve the lowest possible latency in
this dynamic context [6]. One of the main features of DAL is
taking data sharding to the extreme by being able to handle
individual data items independently and move them between
the instances in the cluster as dictated by the actual access
pattern, thus enabling dynamic and automatic co-location.

DAL consists of two components, the server and a client
library that can be linked to the NFs. The client library
exposes a key-value API towards the applications. The API
has standard key-value components that allow for writing
and reading keys, and it also exposes advanced features,
such as messaging and cluster-global announcements. While
traditional key-value databases, like Redis [17], organize keys
into shards with hash functions, DAL separates the keys and
values with an additional abstraction layer. This layer manages
the key map, a data structure which stores all meta information
for the keys, most notably the location of the value (or data
block) associated with the key. Multiple DAL servers form a
cluster, in which all peers share the same key map. All key
map updates, e.g. key creation or data move, are coordinated
by a leader DAL node, and replicated to the rest of the cluster.

This abstraction makes it possible to ensure the co-location
of data elements with NFs currently working on them, but
comes at the cost of a two-phase lookup. In the first step, the
client library queries the DAL server it is connected to for the
current location of the related data element, then, in a second
step, the data itself is addressed directly. The two-phase lookup
is done transparently from the NFs’ point of view and the API
provides an abstraction, a handle object, that can be used to
store the lookup information, thus subsequent accesses using
the handle object will bypass the first lookup step.

Figure 1 shows the high-level architecture of DAL. While
many deployment options are possible, to enable fast local
data access via Inter Process Communication (IPC), it is
recommended to deploy a server and the NF to the same
server node as it is shown for Host 1. In this deployment
the DAL library can directly read the memory pool of the
server using the location information from the handle object.
DAL employs an opportunistic approach by checking a version

4



Fig. 1: DAL architecture

number associated with the data block before and after the
read. In case the server updates the block while it is being
read, the library retries the operation.

DAL servers are single threaded and are operating in poll
mode. In every execution loop the server checks the so-
called control block of each co-located client. A control block
is essentially a shared memory region that is used by the
client library and the server for two-way communication,
specifically for the local write requests and handling all remote
operations. The server also checks for incoming packets on
its transport interface in each loop. DAL has two different
transport implementations, one using a normal UDP socket
and one that uses DPDK [18] to achieve low latency. The
advantage of this design is that co-located clients can be
lightweight, e.g., they do not need a dedicated interface as in
RAMCloud [5]. However, to extend the supported deployment
options, the client library can also use a network interface to
access the DAL cluster, as Host 3 in Figure 1 shows.

In a cloud environment any component may fail and as
a result data reliability is essential. NFs using DAL can
configure their keys to have multiple data replicas, in which
case multiple DAL server instances will store a copy of the
value associated with the key. When a client issues a write, the
command is always routed to the master data replica, which
will replicate the new value to the slave data blocks as well.

B. DAL: a Carrier-grade State Storage Backend

Next, we show the features in DAL that we added in order to
provide all the carrier-grade requirements laid down in Section
II and allow us to adopt DAL as the state storage backend in
our stateless NF framework.

1) Deployment Model: The DAL design adopted in our
stateless NF framework provides great flexibility in how clients
(NFs) and servers are deployed; Figure 2 lists three fundamen-
tally different deployment options.

In (a) DAL is deployed as a “remote only” storage system,
where NFs use the DAL client library with kernel sockets
to access data. This model puts the fewest requirements on
the underlying execution and orchestration system, at the
cost of increased data access times. Option (b) depicts the
“local”, or “strongly coupled” deployment model (this model
also reflects the current industry-trend to deploy value-added
services as “sidecars” at worker nodes [19]), where each NF

Fig. 2: DAL deployment options

instance has a dedicated DAL instance (see DDAL in Section
IV). Here, each NF instance communicates with its side-DAL
server via shared memory, while DAL servers utilize a DPDK-
enabled fast data-plane connection to communicate within the
cluster. This option provides the lowest possible data access
latency in steady state, but it is rigid in terms of scaling: the
application and the storage layer are always scaled together. A
more flexible DSO-like deployment is depicted in (c), where
DAL servers and NFs reside in two distinct scaling domains.
Orchestration must ensure that at least one DAL server is
deployed on each host. Then, NFs can communicate with a
host-local DAL server via shared memory, but multiple NF
instances can share the same DAL server when talking to
the DAL cluster (see CDAL in Section IV). This way we
can fine-tune resource usage without sacrificing the latency
performance of the “sidecar” model.

2) Access Pattern Hinting: In Section II we concluded that
supporting the unhinted mode, where the access pattern on
state is not fixed at compile time, is key to industry-scale
use cases. A key design objective of DAL was to support
this feature through implementing an intelligent adaptive state
placement mechanism.

In order to optimize the locality of individual data elements,
the DAL servers continuously record and analyze access
statistics on a per data item basis. If an item is in majority
accessed through a single remote server, it gets moved there.
The length of the access history that the algorithm takes into
account is configurable as different NFs may have different
requirements. E.g., in case of a counter that is kept in DAL
for a given flow, when the flow is re-located to another NF
instance, the data should be relocated at the first remote access.

3) State Management: For maximal flexibility, a carrier-
grade stateless NF framework must support the unmanaged
mode where state migration from one node, or one DAL server,
to the other does not need central orchestration and additional
management infrastructure. DAL supports this feature through

5



the so-called auth mechanism.
In DAL, data can be moved between DAL servers without

notice. Correspondingly, the cached handle objects may oc-
casionally store obsolete location information. DAL uses an
opportunistic approach to tackle this problem: DAL-handles
store an additional auth value which is used to validate location
information. In case of an auth mismatch, the client library
gets an internal error and executes the full two-phase lookup,
again transparently to the NF. Hence, state migration is fully
adaptive and occurs without central control in DAL.

4) State Representation: Finally, we show how DAL sup-
ports both explicit and implicit state representations.

As mentioned earlier, the DAL client library exposes a
key-value API towards the applications, but the values stored
into DAL are completely opaque to the DAL cluster. so it
is up to the NF developer to choose which model to use to
represent NF state. In most use cases we found the explicit
mode to be much easier to work with thanks to its simple API;
however, in the particular case of the vIMS where the explicit
representation of the call records of millions of subscribers
amounts to a prohibitive quantity of state, we rather built our
solution based on the implicit mode, as shown in Section IV.

IV. PERFORMANCE AND FEATURE EVALUATION

In our proposed stateless NF framework we deploy NFs
with custom Python scripts in Docker containers. We build
pipelines from standard BESS (Berkeley Extensible Software
Switch) [20] modules to implement load balancing, and to
provide connectivity between components. The state plane
is provided by DAL. To generate traffic and to measure
throughput and packet latency we also use BESS. Here we
show the performance of our design in illustrative corner cases,
and as a proof of feasibility, we present a telco use-case soon
to be deployed in an operational network.

A. Synthetic Measurements

For these measurements we used a 28-core Intel Xeon CPU
E5-2680 v4 @ 2.40GHz - 56 hyperthread server.

Performance of key-value stores. Since there is no state-
less NF system without storage components, first we bench-
mark different key-value stores. Table I sheds light on their
raw performance.

TABLE I: Access time for key-value stores [µs]

Redis S6 DDAL1 CDAL
Local read 69.84 0.16 0.12 0.12
Local write 94.65 0.17 2.30 2.30
Remote read 73.88 18.41 21.20 -
Remote write 94.04 18.23 22.74 -

Key-value stores distribute the NF states among the cluster’s
instances. Based on the proximity of the NF and an instance
that can serve the NF’s read/write request, operations are
categorized as local or remote. In S6, for example, if the NF
has the ownership of a state, then read/write operations are
significantly faster than the remote ones.

1DDAL used kernel socket for remote operations, instead of DPDK

Fig. 3: Steady-state throughput of different NFs

Redis is a popular example of a TCP-based, general purpose
key-value store2 [17], which explains why the time it takes for
an application to write or read a single piece of information
to the store (70−90µs) is orders of magnitude worse than the
access times of the other technologies. Therefore, we exclude
Redis from the subsequent evaluations.

DAL is evaluated in a single node setup, but with two
extremes: (i) DDAL corresponds to option (b) of Figure 2,
where in each container runs a DAL instance alongside with
a NF, similarly to the S6 architecture; and (ii) CDAL corre-
sponds to option (c), where there is a single DAL instance per
host running in its own dedicated container. In CDAL there is
shared memory between the NFs and the DAL instance, thus
inside a single node there is no remote operation.

Steady-state performance. Although S6, DDAL, and
CDAL exhibit similar performance on the atomic state-layer
operations, the overall performance of NFs greatly depends on
the complexity of the packet processing task and the frequency
of such atomic operations. We examine two NFs that belong
to the extremes in terms of state access: (i) a read-heavy NAT,
and (ii) a write-heavy source IP address Counter NF. For
each incoming packet, NAT reads the state store to get the
translated IP address and port number in order to overwrite
the original packet header. When a new flow arrives to the
NF, it generates new address mappings (one for the outgoing
and one for the reverse direction) and writes the new state
to the state store. The Counter NF is a simplified statistical
function, which samples the number of incoming packets for
each flow. Flows are defined by their source IP address. The
NF writes packet counts into the state layer for every tenth
local update in order to reduce the load on the state layer.

Steady-state operation is free of state migrations, however
NFs may cerate per-flow states when new flows arrive to the
system; Figure 3 depicts the effect of flow arrival rate on the

2Currently there is no official C++ client for Redis, so we used acl-redis
client: https://github.com/acl-dev/acl/tree/master/lib acl cpp/samples/redis

6



Fig. 4: Total throughput before and after a scale-out event

throughput in the 2 NFs reading/writing states locally, i.e.,
without using any external state storage component, into S6
and into CDAL. During the test, the total number of flows is
kept constant at 1000, but flow arrival rate is varied. We ob-
serve that extensive flow arrival does not significantly impact
NFs using local-only state variables and that write-heavy NFs
show lower performance than their read-heavy counterparts.
S6-based NFs work in hinted mode while DAL works in
unhinted mode, still the NAT-CDAL outperforms NAT-S6. On
the other hand, Counter-CDAL falls behind Counter-S6; this
is because S6 local writes are significantly faster than CDAL
local writes (see Table I). Additionally, state creation impacts
NAT-CDAL the most.

Elasticity - scale factor. Figure 4 shows saturated, steady-
state throughput of a system before and after scaling out from
one NF to two NFs. The NFs following local-only deployment
(NAT-local, Counter-local) exhibit an ideal scale factor, i.e.,
they double the throughput after scale-out: these provide an
idealistic upper bound as they do not have shared states.
NAT-CDAL and Counter-CDAL work in unhinted mode; their
adaptive state migration results in local-only operations, hence
their scale factor is also around 2. The NFs in local-only mode
have significantly larger throughput than the corresponding
DAL NFs, but as we argued before, failover is not possible
and scaling requires managed state migration.

S6 in DSO-mode does not implement adaptive state migra-
tion, so NAT-S6 and Counter-S6 work in remote-mode. If the
load-balancer steers a flow to a NF having the ownership of
the flow’s state, then the remote read/write operations are fast.
On the other hand, state access operations are slower when
operations are in fact remote. Counter-S6 (trafficN) depicts the
case when the load balancer steers N percent of the flows to the
correct NF. Traffic100 requires an explicit state controller and
coordination with the load-balancer, which is not feasible in
every deployment. Due to the lack of adaptive state migration
and intelligent state placement, scaling out does not provide

Fig. 5: Packet latencies after a scale-out event of a NAT

additional throughput in case of traffic50 and of traffic0.
We can observe in Figure 3 and 4 that write-heavy Counter

NFs have lower throughput than their ready-heavy NAT coun-
terparts, even though the Counter NF has simpler packet
processing algorithm. Note that, however, the state access
pattern becomes less significant as complexity of the packet
processing algorithm increases.

Performance impact of state migration. State migration
happens because of scaling or restoration. These events are
usually rare, but their impact on performance should still
be minimal to maintain strict industrial-scale delay-SLOs.
Figure 5 and 6 show the latencies of flows steered to a newly
started NF after a scale-out event has happened (at time 0). As
opposed to Figure 4, here the offered load is moderate, less
than 1 Mpps, which is well below the NFs’ maximal capacity.
This choice of input traffic rate deliberately avoids buffering
of packets, as we are interested in the performance of the
stateless design, without weighing in any potential buffertime.

In Figure 5 the blue solid line denotes NAT’s packet latency
when applying DDAL with adaptive state migration, i.e., the
NF tries to access state information only after encountering
an unknown flow. The orange dashed line belongs to a DDAL
NAT with proactive state migration; here a state management
controller makes sure that required state is available in the
DAL instance collocated with the NF by synchronizing the
state migration with the load balancer before time 0. The
proactive method causes latencies to grow around 50µs,
because the NF needs to acquire DAL-handles for the new
state variables. However, steady-state is reached considerably
faster than in the reactive case: the transient phase lasts 5s
and 10s for the proactive and the reactive case, respectively.
In addition to the prolonged convergence time, adaptive, i.e.,
reactive, state migration results in much higher maximal delays
(200µs), as the system first relies on remote reads until DAL
notices the change in the access pattern, transfers the affected
state to the closest DAL instance, creates the new handles and

7



Fig. 6: The empirical distribution of packet latencies after a
scale-out event of Counter NFs

eventually carries on with local reads.
Figure 6 shows similar effects for the Counter NF through

the displayed empirical distribution of measured packet la-
tencies. Note that packet latencies, due to the remote writes,
in the reactive case reach close to 100µs for 10% of the
packets, and latencies due to acquiring state handles in case of
proactive state migration all fall in the range of [1µs, 30µs].
These values are larger than individual access times of atomic
operations in Table I, because batch arrival of new flows results
in queued DAL operations.

Note, however, that a high packet rate would cause more
state migration events, and those high latencies for the early
packets could start and build up a significant buffer queue, ul-
timately prolonging the overall transient phase and increasing
the packet latency values. This is again an important reason
for why the flexibility of state plane scalability is crucial, and
for why the elasticity of NFs should be maximally supported.

B. Telco Application: vIMS Restoration from DAL

The IP Multimedia Subsystem (IMS) enables various types
of media services to be provided to end-users using common,
IP-based protocols. To protect and hide vulnerable details of
the operator’s core network, the Border Gateway Function
(BGF) is placed between the access and core networks as a
pinhole firewall and NAT/NAPT functionality. As such, it is
responsible for filtering and transferring the RTP based media
streams exchanged by mobile subscribers.

Traditional telco nodes couple the states of the user sessions
with the physical executors. Accordingly, if a physical entity
fails, then the handled user sessions get lost. On the other hand,
it is also common that each functionality is implemented on
top of a dedicated hardware resource (e.g. board, DSP chip)
that overall makes the system distributed and inherently more
robust against hardware failures. In case of a failure, only those
calls are affected that shared the same resources, which is an
insignificant amount of sessions.

Fig. 7: Cloud deployment of the Border Gateway Function:
Active virtual machine instances handle the sessions of a
number of users, and a BACKUP instance is in standby for
failover, building on the state stored in DAL

However, this does not apply to the cloud anymore where a
VM can serve tens of thousands of sessions, relying on a single
hardware infrastructure. In a cloud deployment of BGF each
user session is tied to a particular instance, i.e., connected to a
particular IP address / port of the BGF VM instance. In such
a system if a VM fails, all the sessions get lost, which impacts
a large number of subscribers and this cannot be tolerated.

Alongside this application we use DAL for storing the state
and retrieving it, when necessary, and we compare the DAL-
based solution with the traditional (not virtualized) resiliency
scheme: 1+1 hot standby for the user plane dedicated hard-
ware. These latter ones work in mated pairs, i.e., if the primary
fails then the secondary takes over the traffic.

The evaluation setup is the following. We distinguish two
roles of VMs in the cloud deployment of BGF: Active and
Standby. In the cloud solution we give N+1 protection: 1
Standby that can take over the calls from any Active VM (see
Figure 7 for illustration). We used 4 Active and 1 Standby
VMs in each evaluation setup, and we made 10 runs the
average results of which are plotted in Figure 8. The VMs were
run in an OpenStack environment, and all VMs were placed
on different compute nodes. The input traffic were collected
from IPv6 access and IPv4 core traffic.

We were interested in seeing how fast the Standby recon-
stitutes the states and takes over the traffic when we kill an
Active VM. The results are shown in Figure 8. The failover
time is given on the y-axis as the number of flows (representing
the load) increases on the x-axis. In total we measured an
average of 1.6 sec outage on the media plane, that is what all
end users handled by the failed VM experience. As the media
plane restoration time results are below 2 sec, including the
time necessary for failure detection, the design is acceptable as
the industry standard threshold of maximum tolerable outage
on the media plane is 2-3 seconds, otherwise a regular user
drops the call. This tolerable range of service outage duration

8



Fig. 8: The dependency of service restoration, and total
recovery time in the function of processing load on the BGF
VM instances

is represented by the shaded gray area in Figure 8. The
media service restoration time is the sum of 1 sec for failure
detection, 0.5 sec for media plane recovery, and there is a short
time interval that is needed for interface reconfiguration and to
have the GARP propagation (having the underlying switches
update their MAC tables).

The total recovery time under maximum VM load (also
shown in Figure 8) is the sum of the media and the control
plane’s restoration periods. We measured an average of 7.7
secs needed for control plane recovery in cases where the
traffic load on the VMs were at their maximum. The relatively
long duration of the control plane restoration is due to its
complexity. After the overall recovery, the service level of
the call is exactly the same as before the failover, e.g., if
an affected user changes its location, the session will not
get disconnected. During both the media and control planes’
restoration, 33% of the time is spent in DAL reads, and 66%
of the time is taken for state restoration. These activities run
in an intertwined fashion, alternating between each other.

The benefit of relying on N+1 redundancy and DAL-based
retrieval of states is the great cost saving. When introducing
the DAL-based redundancy, we need 1 vCPU and 1 vNIC per
VM compared to the original flavor in order to be able to cover
the resource consumption of the DAL clients co-located with
the BGF functions. The additional memory usage is around
200MB in each VM. On the other hand, we need only 1 backup
instance for every N vBGF instances, instead of N.

The DAL-based solution will go into production in 2019.

V. CONCLUSION

We present a novel stateless NFV architecture where the
main focus is on flexibility in terms of adaptation to very
different applications and usage patterns. State-of-the-art tech-
nology in this field is highly optimized for either the “sidecar”

solution [19], such as S6 [7], which uses a dedicated database
instance for each worker and this way is ideal for workers
with heavy packet processing workload, or for a centralized
solution such as RAMCloud [5] or Redis [17] which are
ideal for latency insensitive, low intensity workloads, such as
signaling or control applications where database consistency
is essential. Our solution, DAL, allows for scaling the packet
processing functions and the database instances independently,
this way leading to a fully flexible architecture without any
deployment constraints. Moreover, DAL offers automatic state
management with the aim of yielding maximal performance.

Other competitive features of our proposed design, which
place DAL on top of all the alternatives, are reliability,
modularity, and the possibility of deploying it on commodity
hardware. The state plane provided by DAL offers industry-
scale performance for any use case adaptively, i.e., without
explicit burden of managing states, packet processing functions
and network control by an additional layer of coordination.
We prove the benefits of our design across corner cases in
synthetic setups. Furthermore, we also present a telco use case
for which the DAL-based stateless design is planned to be
deployed shortly in an operational telco network.

REFERENCES

[1] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in ACM SIGCOMM, 2013.

[2] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in ACM SIGCOMM, 2012.

[3] S. Palkar et al., “E2: a framework for NFV applications,” in ACM SOSP,
2015.

[4] M. Kablan et al., “Stateless network functions,” in ACM HotMiddlebox,
2015.

[5] ——, “Stateless network functions: Breaking the tight coupling of state
and processing,” in USENIX NSDI, 2017.

[6] G. Németh et al., “DAL: A locality-optimizing distributed shared
memory system,” in USENIX HotCloud, 2017.

[7] S. Woo et al., “Elastic scaling of stateful network functions,” in USENIX
NSDI, 2018.

[8] M. Stine, “Cloud native architecture patterns tutorial,” in O’Reilly Soft-
ware Architecture Conference, 2017, [Online: https://www.slideshare.
net/mstine/cloud-native-architecture-patterns-tutorial].

[9] J. Khalid et al., “Paving the way for NFV: Simplifying middlebox
modifications using statealyzr,” in USENIX NSDI, 2016.

[10] Intel, “Network function virtualization: Quality of Service in Broadband
Remote Access Servers with Linux and Intel architecture.”

[11] ——, “Network function virtualization: Virtualized BRAS with Linux
and Intel architecture.”

[12] N. Mahmud et al., “Evaluating industrial applicability of virtualization
on a distributed multicore platform,” in IEEE ETFA, 2014.

[13] A. Gember-Jacobson et al., “OpenNF: enabling innovation in network
function control,” in ACM SIGCOMM, 2014.

[14] S. Rajagopalan et al., “Split/Merge: system support for elastic execution
in virtual middleboxes,” in USENIX NSDI, 2013.

[15] ——, “Pico Replication: a high availability framework for middleboxes,”
in ACM SOCC, 2013.

[16] J. Sherry et al., “Rollback-recovery for middleboxes,” in ACM SIG-
COMM, 2015.

[17] M. D. Da Silva and H. L. Tavares, Redis Essentials. Packt Publishing,
2015.

[18] Intel, “Guide: Data plane development kit for linux,” Guide, April 2015.
[19] S. Behara, “Sidecar design pattern in your microservices ecosystem,”

dotnetvibes, 2018. [Online]. Available: https://dotnetvibes.com/2018/07/
23/sidecar-design-pattern-in-your-microservices-ecosystem

[20] BESS Comitters, “BESS (Berkeley Extensible Software Switch),” 2018.
[Online]. Available: https://github.com/NetSys/bess

9


