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Abstract—For IP to evolve into a true carrier-grade trans-
port facility, it needs to support fast resilience out-of-the-box.
Unfortunately the de facto IP protection mechanism, Loop-Free
Alternates (LFA), does no cover all possible failure scenarios that
can show up in an operational network. The main concern in this
paper is, correspondingly, to construct an overlay on top of the
physical network, whereas virtual routers are provisioned that
provide LFA protection to otherwise unprotected failure cases.
Our main contribution is a new Resilient IP Overlay Design
algorithm, which, in contrast to previous work, is guaranteed
to terminate with a fully protected topology, runs in polynomial
time, and eliminates all adverse LFA loops. According to the
numerical evaluations the performance of our algorithm is on
par with, or even better than, that of previous ones, lending
itself as the first practically viable option to build highly resilient
IP networks.

Keywords—IP Fast ReRoute, Loop Free Alternates, resilience,
network optimization

I. INTRODUCTION

The Internet is quickly becoming the main bearing platform
for converged telecom services. For the Internet Protocol (IP)
suite to become a real carrier-grade transport infrastructure,
however, it needs to deliver five-nines availability, the key
to which is fast convergence from link and device failures.
Historically, the IP control plane adopts a sluggish restoration
mechanism to handle outages, according to which the Interior
Gateway Protocol (IGP), upon detecting a topology change,
advertises the altered network state throughout the routing
domain, re-computes shortest paths at each router, and then
downloads the new forwarding state into the data plane. This
process, while robust and easy to configure, is lengthy.

Unfortunately, the framework for fast IP-level protection,
the TP Fast ReRoute scheme (IPFRR, [1]), today does not
come equipped with a practical and deployable implementation
that would provide an all-out solution. What the basic IPFRR
specification recommends, and what most router vendors im-
plement [2]-[4], is Loop-Free Alternates (LFA, [5]), whereas
the IGP attempts to find a secondary next-hop that protects
against the failure of the default shortest path. It turns out
that LFA can protect only 50-80% of possible link failures in
general, and node protection is even poorer [6]-[8]. Alterna-
tives to LFA that would provide 100% failure protection [6]—
[14], unfortunately, could not yet gain sufficient adoption from
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standardization bodies, router vendors, and network operators,
due to the implied management burden and the breaking of
the incremental deployment path.

To build truly resilient IP networks on top of LFA, today
operators resort to re-designing the physical topology [15] or
straight out re-building it from scratch [16], or re-adjusting the
IGP link costs [17]-[19]. These interventions are, however,
intrusive and costly, due to adversely interfering with the
normal operation of the network, the traffic engineering goals
of the operator, and the user experience of the customers.

Recently, there has appeared a new LFA network opti-
mization technique that eliminates these hurdles. The idea
is to construct a resilient IP overlay on top of the physical
IP substrate, thereby provisioning “virtual LFAs” to physical
routers that have gone unprotected otherwise. In essence, this
technique is similar to the tunnel-based IPFRR mechanisms
and LFA extensions [10], [20], but instead of defining a new
control plane protocol it rather “emulates” tunnels by a suitably
provisioned overlay, intervening solely at the management
plane. The significance of this delegation of the responsibility
for IP fast resilience optimization from the control plane to the
management plane is not to be dismissed; current IP devices
come with the control plane protocols deeply embedded into
the hardware and software and therefore most efforts to modify
basic IP control protocols have gone unsuccessful for years
due to network operators being reluctant to ditch expensive
IP network gear (the phenomenon often referred to as “the
ossification of the Internet” [21]); compared with this, a one
time management plane intervention to deploy a virtual overlay
and turning on LFA that is supported by most IP routers out-
of-the box [2]-[4] seems a bargain.

The authors in [22] propose an Integer Linear Programming
(ILP) based greedy optimization strategy to design the overlay
and show that deploying only about 2 virtual routers per phys-
ical node already boosts LFA-failure protection close to 100%.
Again, this comes without having to define, standardize, and
deploy new protocols or interfering with the normal operation
of the network in any observable ways, using commercially
available networking gear, and with a one time management
effort.

The authors in [22], however, leave some important ques-
tions open. First, it is left unclear whether their optimization
strategy is optimal, i.e., whether it always terminates with a
100% LFA-protected network. At the moment, even the very
question whether such fully protected overlay is guaranteed to
exist goes undecided. Second, at the heart of their technique
is an ILP with unpredictable running time. This is especially
troublesome, taking into consideration the large size of IP



backbones in use today, which can easily trigger unsolvable
ILP instances. At the moment it is, thus, of question whether
a technique with a firm polynomial running time bound exists.
Finally, as shall be shown below their technique is vulnerable
to a detrimental phenomenon, henceforth referred to as trap
node leakage, in that it can happen that the virtual overlay
supplies LFA to routers that already had LFA-protection in
the physical network and, under certain inauspicious circum-
stances, such “spurious LFAs” can force traffic into an infinite
LFA loop, causing packet loss.

Our main goal in this present paper is to close these
gaps. In particular, we show that the algorithm in [22] is
not optimal, in the sense that it terminates with a partially
protected overlay for certain inputs. Correspondingly, we go
on to design an improved heuristics. As a main contribution
we prove that, depending on a setting of a simple configuration
parameter, our algorithm is either optimal or it is guaranteed
to terminate in polynomial time, and it is possible to efficiently
balance between the two according to the preferences of the
operator. In addition, we identify cases when the original
algorithm of [22] suffers from trap node leakage and we give
an improved set of conditions to eliminate trap node leakage all
together. Finally, we evaluate the performance of our algorithm
extensively. Our results indicate that the performance of our
heuristics is on par with, and in many cases even better than,
the ILP-based algorithm of [22].

The rest of this paper is organized as follows. After a brief
background and problem formulation in Section II, we discuss
our heuristics and the related theoretical findings in Section III.
Numerical studies are presented in Section IV, and finally
Section V closes the paper.

II. MODEL AND PROBLEM FORMULATION

Let the IP network substrate be given as a connected
undirected graph G(V,E), where V marks physical nodes
(n = |V|) and E marks physical edges (m = |E|). Let IGP
link costs be given by the function ¢ : E — ZT, with the
cost of edge (¢, j) denoted as c(i, j). Denote the shortest path
distance between nodes 4 and j with dist(¢, j). For simplicity,
we assume that links are point-to-point and there is a well-
defined next-hop for each source-destination pair. LANs and
multipath issues are for further study. Let neigh(v) denote the
set of neighbors of some node v € V.

In our model, the substrate adopts Loop-Free Alternates for
fast failure protection [5]. To understand LFA consider the
network in Fig. 1, initially ignoring the virtual router marked
by b’ and its incident virtual links. Now, if a packet is sent from
b to e the next-hop is f. However, should the link between b
and f fail, without adequate measures in place all b — e traffic
would be lost until the IGP recalculates shortest paths, which
can take anything from 150 ms to several seconds [23]. LFA
seeks to avoid this by assigning a secondary next-hop to b, in
this case node d, which offers a detour to e bypassing the failed
component. As d is not notified about the failure (which makes
LFA blazingly fast), the alternate next-hop must be such that its
shortest path to the destination does not traverse b. Otherwise,
the alternate next-hop might blindly send the packets back to
b, leading to a routing loop.

Figure 1: Sample network with IGP link costs. Arrows mark
shortest paths, dashed lines are virtual links.

In general, for some source s, destination d, and next-hop
t, a neighbor ¢ # t is called a link-protecting s — d LFA if ¢
is such that the following “loop-free condition” holds [5]:

dist(q, d) < dist(q, s) + dist(s,d) . (D

Unfortunately, very often it is impossible to satisfy this
requirement for all node pairs. In the network of Fig. 1, for
instance, ¢ does not have an LFA to d as its only physical
neighbor b is upstream. Remarkably, however, if a virtual
router b’ is established on b and the IGP costs on the virtual
links of &’ are set so that the shortest path to d traverses f
as next-hop, then b’ will provide an LFA to ¢ — d. As virtual
routers are practically indistinguishable from physical ones as
far as the IGP is concerned, b’ will show up as a legitimate
LFA at c. The main observation in [22] is that, by cautiously
provisioning a virtual overlay that provides such virtual LFAs
to unprotected node-pairs, LFA-protection can be improved
upon substantially. Here, the level of LFA protection is usually
characterized by the LFA coverage metric 7, defined as the
proportion of protected vs. all source-destination pairs [22]:

# LFA-protected (s, d) pairs
n(G,c) = . ) :
#all (s,d) pairs

Note that we consider a source-destination pair protected if
(i) the source has a link-protecting LFA to the destination and
(ii) the LFA indeed offers a detour, in that a packet sent from
the source via the LFA is guaranteed to reach the destination.
This is verified by a simple LFA-aware packet tracer. In the
sample network 7(G, ¢) = 0.766.

@

A. Problem formulation

In this paper, our main concern is the Resilient IP Overlay
Design problem. Here, we are given a graph G and costs ¢
and the task is to design an overlay Gy (Vy/, Ey) and proper
link costs ¢y so that LFA coverage (G, ¢y) is maximized.
Easily, we want to achieve this with the minimum number of
virtual routers, which translates into minimizing management
overhead. Since the full-fledged problem is extremely complex,
we describe here a simplified but more workable model [22].

In our model, physical elements (routers and links) are
treated the same as virtual elements, with each virtual element
having a default entity representing the physical element it is



Figure 2: A second sample network with an LFA loop. Arrows
mark shortest paths, dashed lines are virtual links.

instantiated on. Formally, let fx : Vi, — V be a mapping that
to each v € Vi, orders the corresponding default node v € V
and similarly, fg : Fy — E maps virtual links to default links.
Additionally, we require that virtual links connect nodes whose
default routers are physically connected. These assumptions
generally ensure that the substrate G will be a subgraph of the
virtual topology Gy and V C Vi, and FE C Ey.

We shall assume single link failures in the physical net-
work, as these make up the majority of unplanned outages in
operational IP networks [24]. Crucially, a single physical link
failure can cause rolling cascade effects in the overlay, since
all the links provisioned on that physical link will go down as
well. Formally, for each link e € Ey we define a Shared Risk
Link Group (SRLG) containing all the virtual links sharing the
default link for e: Sp(e) = {l € Ev : fr(l) = fe(e)}. If e
fails, all links in Sg(e) fail. Similarly each node v € V has
its own SRLG: Sy (v) = {u € Vi : fy(u) = fn(v)}.

In order to ensure that no special protocol is needed to
distribute SRLGs, currently the LFA specification [5] supports
so called local SRLGs solely that are restricted to links
incident to a single router. Correspondingly, for LFA we cannot
configure an SRLG that, say, contains all the virtual links
established on the same physical link. As it turns out, this
greatly hinders our freedom to shape the virtual overlay.

Consider the topology in Fig. 2 and suppose that b is about
to send packets to f. If, for some reason, link (b, f) goes down,
b may choose to redirect its traffic to the LFA d’. However,
said traffic will never arrive to f as the d’ — f detour degrades
into the LFA loop b—d' — ¢’ — b —c—0b. Here, b’ also switches
to its LFA c realizing that its link to f has disappeared due the
physical failure which o’ is unaware of, thanks to the lack of
general SRLG support in LFA. What is worse, such spurious
LFAs can override existing LFAs, like in our case d’ can replace
the legitimate LFA d. Accordingly, we find that an inadvertent
virtualization decision might easily end up corrupting existing
LFAs and decreasing LFA-coverage, instead of increasing it.
Naturally, such cases must be avoided at all costs.

In order to achieve this, it is beneficial to turn our LFA
definition SRLG-aware.

Definition 1: For source s, destination d, and s —d next-hop
t, node q is an SRLG-disjoint link-protecting s — d LFA if
LFA-1: g € neigh(s) and ¢ # t,

LFA-2: dist(q, d) < dist(q, s) + dist(s, d),

LFA-3: (s,q) ¢ Sg(s,t) (local SRLG condition), and
LFA-4: each ¢ — d shortest path is SRLG-disjoint from (s, t).

Since current LFA implementations are restricted to LFA-1,
LFA-2, and LFA-3, our virtual overlay construction algorithms
need to be designed so that LFA-4 automatically fulfill.

With these notations in place, we can now pose the Resilient
IP Overlay Design (RIOD) problem. Here, the task is to
compute the overlay that maximizes LFA-coverage, using only
a given number of virtual routers. In addition, we also allow
to limit the set of routers that can host virtual instances.

Definition 2: RIOD(G,¢,U,k): given a graph G(V, E),
link costs ¢, node set U C V, and positive integer k, design
a graph Gy (Vy, Ey) and link costs ¢, so that n(Gv,c,) is
maximal, where:

o Vy =V UUy with Vu € Uy :

nodes provisioned only inside U)

o |Uy| <k (no more than k virtual instances),

e FE, C EU Uy x neigh(U)) (virtual links between

physically connected routers),

e shortest paths in G do not change (the substrate is

unaltered); and

o LFA-4 is guaranteed (no spurious LFAs).

In another version of RIOD, we may ask to reach a certain
LFA-coverage threshold while minimizing the size of the
overlay |Uy |. For the decision version of RIOD, the following
complexity characterization was given in [22].

Proposition 1: RIOD is NP-complete.

In fact, [22] shows that RIOD is already NP-complete in
the simple case when only a single virtual node is to be
provisioned on a fixed physical router v € V (i.e., the case
of RIOD(G, ¢, U, k) with U = {v} and k = 1). We shall refer
to this useful special case of RIOD as the LFA Virtual Router
Augmentation Problem LFAVirt(G, ¢, v).

fn() € U (virtual

B. Solving RIOD

The authors in [22] propose a greedy optimization strategy
to solve the special case RIOD(G, ¢, V, 00) (i.e., every router
can host virtual routers and there is no limit on the size of
the overlay). Their method consists in iteratively provisioning
the virtual node whose addition to the network increases LFA-
coverage the most, by solving LFAVirt(G, ¢, v) for each v €
V and taking the maximum. The iteration terminates when
LFA-coverage stops increasing.

Algorithm 1 Greedy algorithm for RIOD(G, ¢, V, o)

do: n + n(G,¢)
for each w € U: (cy, My ) < solve LFAVirt(G, ¢, w)
(w',n') + choose w € U that maximizes 7,
add w’ to G and set costs to ¢y,

while ' > 7

Here, LFAVirt(G, ¢, w) indicates how LFA-coverage would
improve if a new virtual router were instantiated on w. The
authors in [22] present an Integer Linear Programming based
method to solve this problem. They pre-calculate the following
four sets: the set of eligible node-pairs L that can gain an LFA



from a virtual router w’ established on w; for each (s,d) € L
a set of escape nodes Esq consisting of the nodes which, if
chosen as a next-hop for w’ to d, would render w’ an s — d
LFA; the critical node-pairs Q that can gain a spurious LFA
from w’; and finally the trap nodes T,q which, if chosen as
w’ — d next-hop, would make w’ a spurious s — d LFA. Then,
the ILP computes the optimal virtual links and the respective
link costs so that the most escape nodes become next-hops for
w’ and hence LFA-coverage is maximized, while no trap node
becomes next-hop and so spurious LFAs never show up.

This ILP, integrated into the greedy optimization strategy of
Alg. 1, proved very powerful in practice [22]. In the rest of
this paper, we further explore the theoretical and algorithmic
aspects of RIOD in order to close the remaining gaps in our
understanding of the problem.

III. AN IMPROVED HEURISTIC

If we take a closer look on the greedy optimization strategy
as proposed in [22], we find the following issues: optimality is
not guaranteed; the complexity of the ILP for solving LFAVirt
can be substantial and unpredictable; and it is unclear whether
the above definition for trap nodes indeed eliminates spurious
LFAs. In what follows we address these issues one by one.

A. Eliminating spurious LFAs

The key subroutine in Alg. 1 is solving LFAVirt(G, ¢, w).
This delivers the optimal virtual links and link costs to be set
at the virtual router w’ added to w € V, so that LFA-coverage
is maximized and spurious LFAs are ruled out. The authors
in [22] propose to eliminate spurious LFAs using the notion
of trap nodes: given an s — d pair, the set of trap nodes T4
contains all the nodes g € neigh(w) which, if assigned as a
w’ — d next-hop, would create a spurious s — d LFA. Easily,
we will want to prevent such choices to preclude LFA loops.

The trap node condition is formally described through a so
called packet-tracing procedure in [22].

Definition 3: Let Ggq,49(Vs a9, Es,ag) be the directed
graph spanning the links traversed by a packet tracer procedure
starting from node g and running at most n steps on a graph
with the link between s and the s — d next-hop removed.

Condition 1: g € Tyq if g € neigh(w) and d ¢ V; g 4.

In other words, a node g is a trap node if a packet, sent from
s through the prospective LFA w’ and from there through the
next-hop ¢ towards d, would get stuck in an LFA loop. Below,
we argue that this condition is too weak, in the sense that it
does not cover all “bad choices” for the w’ next-hops.

Observation 1: There is a graph G, costs ¢, a node-pair
s — d, and nodes w and g, so that adding the virtual node
w’ to w and setting the w’' — d next-hop to g results in an
LFA-loop, even though g ¢ T4 as per Condition 1.

Consider the network in Fig. 3 and, initially, assume that
b’ is the only virtual router. At this step, we notice that the
insertion of d’ would protect the (unprotected) e — f node pair,
provided that the d’ — f next-hop was chosen to, say, node b'.
Before making this decision, though, we still have to check
whether it would create a spurious LFA to other node pairs.

Figure 3: Trap node leakage.

Suppose we are to check Condition 1 for the node-pair b— f.
As at this point d’ is not yet part of the topology, we find that
packets from b’ reach f along the path &’ —c—b—d—e— f (note,
that b also switches to its LFA and so does b) and we conclude
that b is nor a trap node for b — f. Nonetheless, if we indeed
provision d’ with next-hop &', then we end up with the LFA
loop b—d’' — b’ — ¢ — b. The reason for this trap node leakage
phenomenon is that the spurious LFA d’ appears alongside
the already existing LFA d, and since LFA implementations
do not have a way to configure LFA preference neither they
support general SRLGs, it might very well be the case that the
spurious LFA overrides the legitimate one. Unfortunately, we
do not have a way to anticipate this, since the spurious LFA
is still not part of the network when packet tracing is done.

Next, we strengthen the trap node condition to eliminate trap
leakage. As it turns out, this comes at the price of ruling out
a small portion of options that would yield a legitimate LFA.

Condition 2: g € Tgq, if (i) g € neigh(w) and d ¢ V; 44,
or (ii) g € Sn(s) and 31 € Sy(s) so that [ € V; g 4.

Here, (i) coincides with Condition 1, and (ii) ensures that the
detour never returns to s or any of the virtual nodes provisioned
on s. This modification, as one easily checks, immediately
rules out the case demonstrated in Observation 1. The general
correctness proof is trivial and so omitted here for brevity.

B. Optimality

So far, it has been an open question whether the greedy op-
timization algorithm as of Alg. 1 guarantees a fully-protected
overlay. Below, we answer this question in the negative.

It could still happen that Alg. 1 fails to find the fully-
protected overlay because such overlay may just not happen
to exist. First, we prove that this is not the case, showing that
RIOD(G, ¢, V, ) is always solvable to optimality.

Theorem 1: Given a 2-connected graph G with positive
costs ¢, there is an overlay Gy and costs cy that solve
RIOD(G, ¢, V, 00) with n(Gy,cy) = 1.

Proof: We show that, given any unprotected node-pair
s—d, there is a proper set of virtual nodes whose addition will
create a link-protecting SRLG-disjoint s — d LFA. It follows
that if we apply this step to each unprotected node-pair, then
LFA-coverage eventually reaches 100%.

We protect the s — d pair by provisioning a “virtual tunnel”
between s and d that provides a detour for s bypassing its
failed next-hop. Let s — ¢ — ... —r — d be an s — d path
disjoint from the s — d next-hop (such a path is guaranteed



to exist as GG is 2-connected). Create a virtual node for each
node between ¢ and r and denote the new virtual router on
g by ¢ and the one on 7 by r’. Connect s to ¢’ and 7’ to
d and set the link cost on s — ¢ “high” (say, larger than the
length of the longest shortest path) and at the rest of the virtual
links to the lowest possible. As one easily checks, ¢’ is now
an s — d LFA. We still need to show that LFA-4 holds and so
no spurious LFAs emerge, but this is guaranteed as there are
only two entry points to the virtual tunnel, ¢’ and r’, and ¢’
is protected by the local SRLG at s (as of LFA-3) and 7’/ is
never an LFA due to its low cost. [ ]

Next, we show that, even though a solution with complete
LFA-coverage always exists, the greedy algorithm of [22] does
not necessarily find it.

Theorem 2: Alg. 1 may terminate with n(Gy,cy) < 1.

Proof: We show a counter-example in Fig. 4. Here, n =
%, as the only unprotected node-pair is ¢ — d. Additionally,
all the 2-hop neighbors of ¢ are upstream for d, and because
Alg. 1 provisions only a single virtual router in each step the
furthest it can reach with a virtual tunnel is a, which is also
upstream. Hence, Alg. 1 terminates with n < 1. ]

It may be tempting to believe that our counter-example is
a pathologic case due to the large cost of the a — d link.
This, however, is not the case, as one can easily show unit-
cost counter-examples similar to the one in Fig. 4 (e.g., by
substituting the (a, d) link with a long chain of unit-cost links).

As it turns out, the real shortcoming in Alg. 1 is that it
augments the graph in steps too small, with only a single
virtual node in each iteration. Instead, one might try to
instantiate two virtual routers when adding only one did not
help, then try three virtual routers at once, etc. This observation
is reflected in the below definition of connected [-sets.

Definition 4: For a graph G, call a set of nodes in U; € V
a connected [-set if the induced subgraph of G spanned by U;
is connected and |U;| = 1.

Our improved algorithm is then based on simply trying
increasingly larger connected sets of virtual nodes until LFA-
coverage eventually improves. Note that, by Theorem 1, there
is a sufficiently large connected [-set for which at least one
node-pair will gain a new LFA, and therefore this modifica-
tion to the algorithm implies optimal termination. The below
modified greedy algorithm implements these ideas.

Algorithm 2 Modified algorithm for RIOD(G, ¢, U, o)

do 1 + n(G,c¢)
for [ =1to k do
for each connected [-set U; C U do
(cu,,nu,) < solve LFAVirt(G, ¢, U;)
end for
(U',n") <= choose U, € U that maximizes 1y,
if ' > 7 then
add U’ to GG and set costs to cy-
break
end if
end for
while ' > 7

Figure 4: A graph demonstrating that Alg. 1 does not neces-
sarily attain complete LFA-coverage.

Note that the algorithm is parametrized on an integer k,
which allows to set an upper bound on the maximum size
of the connected [-sets examined, and hence on the running
time. Also note that the improved trap node characterization of
Condition 2 is trivial to generalize to this modified algorithm,
and so SRLG-disjointness is guaranteed.

C. Polynomial running time

There still remains the problem of how to solve the gen-
eral form of the LFA Virtual Router Augmentation problem
LFAVirt(G, ¢, U;). Here, we need to assign an entire “island of
virtual nodes” on a connected set U; instead of merely having
to add a single virtual router to a known node. In addition,
our solution, in contrast to the ILP in [22], must also run in
polynomial time. Below, we describe a new heuristics tailored
for this setting.

Suppose that we are about to solve LFAVirt(G, ¢, U;) by
provisioning a set of virtual routers U/ on U, with each u € Uj
hosting a single virtual instance u’. Also suppose that eligible
node pairs L, critical node pairs Q, and escape nodes Esq :
sd € L are determined as described in Section II-B and [22],
and trap nodes T4 : sd € Q are calculated using Condition 2.
Finally, denote by neigh(U;) the neighbors of nodes in U; that
are outside Uj.

The main idea of our heuristics is to set a single exit point
for the virtual nodes in U, l’ , that is, to let all traffic that enters
U/ through LFAs leave via a single exit node ¢g’. The way we
do that is that we explicitly rule out all g € neigh(U;) that
happen to be trap nodes, and then we take the node ¢’ which
is an escape node for the most eligible node pairs and hence
creates the largest number of new LFAs. Formally:

g = argmax |sd€ L:g€ Eul - 3)
g€Eneigh(U;)
9¢Tsa:8d€Q

Having chosen ¢’ as of (3), we create a virtual router at each
node of U; and we connect these to each other with small cost,
plus we connect these nodes to all nodes in neigh(U;) with a
large cost except for the virtual link to the exit node ¢’ which
is again set to low cost. It is now trivial to check that this
setting indeed yields that U] has a single exit node: ¢’

The computational complexity of Alg. 2 is O(n? 4 n*+3).
Here, O(n®) comes from the all-pairs shortest path problem
needed be solved to obtain dist(.) and O(n*) is the number
of connected [-sets U; of size at most k. The above heuristics
solves LFAVirt(G,c,U;) for each U, also in O(n?), as £
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Figure 5: LFA-coverage for small and middle-sized topologies as virtual routers are added iteratively with Alg. 1 (ILP) and
Alg. 2 (heur). The x axis gives the number of virtual routers instantiated and the y axis marks the LFA-coverage.

and Q contain O(n?) elements and &,y and T4 contain O(n)
elements, and each can be calculated in O(n?) steps.

Correspondingly, Alg. 2 allows to trade-off optimality for
computational complexity through the parameter k. When run-
ning time is of no concern then k can be set to n, in which case
we are guaranteed to obtain a fully-protected overlay in a finite
number of steps. On the other hand, fixing k at a small constant
results strictly polynomial running time. For the rest of this
paper we set k = 2. In this case the theoretical worst-case
complexity of Alg. 2 is O(n®) steps, however, in practice we
found the all-pairs-shortest path problem to dominate running
time and hence O(n?) to be a more reasonable complexity
characterization. As we shall see in the next section, this setting
yields an overlay with close to perfect LFA-coverage in most
practical cases with very fast running time.

IV. NUMERICAL EVALUATION

Finally, we evaluated the performance of the improved
heuristic algorithm in extensive numerical studies. Our main

concern was the performance of Alg. 2 compared to that
of the original algorithm of [22] (Alg. 1), measured by the
LFA-coverage metric 1 as an increasing number of virtual
routers is provisioned in the network. We did not expect our
heuristics to perform better: after all, Alg. 1 obtains an optimal
solution for each subproblem using an Integer Linear Program,
while Alg. 2 is merely a heuristics. We, however, expected the
performance to not be prohibitively worse and the penalty be
made up for in the improved running time.

The implementation was done in C++ using the LEMON
graph library [25]. For solving the ILPs we employed GLPK,
the GNU Linear Programming Kit [26]. We used the same
input topologies as [22]. These represent service provider
networks, many of which come with real or inferred link costs.
For brevity we do not present all the results here. Instead, we
choose 6 topologies that sufficiently typify our results, namely,
AS6461 and AS1239 from the Rocketfuel dataset [27]; AT&T
and the 50-node Germany backbone from SNDIib [28];
and ChinaTelecom and the Deltacom backbone from
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Figure 6: LFA-coverage for backbone topologies as virtual routers are added iteratively with Alg. 1 (ILP) and Alg. 2 (heur). The
x axis marks the proportion of virtual per physical nodes and the y axis marks the LFA-coverage.

Table I: Evaluated topologies: name, number of nodes n, and
number of links m for each topology.

Name n m
AS6461 [27] 17 37
ChinaTelecom [29] 20 44
Deltacom [29] 103 151
AT&T [28] 22 38
AS1239 [27] 30 69
Germany [28] 50 88

the Topology-Zoo project [29]. Here, AS6461, AS1239,
AT&T, and ChinaTelecom represent small and middle-
sized provider topologies, while Germany and Deltacom
are larger backbone topologies. Information for the topologies
is presented in Table. I. The results themselves for the small
and middle-sized networks are given in Fig. 5 and for backbone
topologies in Fig. 6.

The topology AS6461 is highly representative for our
results. Here, Alg. 1 attains 100% LFA-coverage just by adding
5 virtual routers, while our heuristics matches the performance
closely and also reaches full coverage with 7 routers. Observe
that the heuristics added two virtual routers in the final step,
which is indicated by the missing data point at 6. Similar is the
case for ChinaTelecom, Germany, and Deltacom. The
latter are backbones, and we observe that in both cases our
heuristics eventually even out-performs the ILP, at the price
of setting slightly more virtual routers. On the other hand, for
the case of AT&T and AS1239 we see a small performance
hit. In both cases the heuristics fails to find the fully-protected
topology. To obtain the optimal solution, one would need to el-
evate parameter k in such cases. Nonetheless, the performance
penalty never exceeds 0.2%. In summary, we see very little
performance lag with our heuristics as compared to the ILP and
in some cases we even discover improved performance. Both
algorithms are able to bring small and middle-sized networks

close to perfect LFA-coverage by provisioning just a couple
of virtual routers, and in backbones we see similar improved
protection coverage just by provisioning roughly one virtual
router per node on average. This suggests the Resilient IP
Overlays hold great promise for building robust IP networks.

Notably, we found at least one case (the topology AS1239)
where our packet tracer signaled an LFA loop with Alg. 1,
as a clear indication of trap node leakage identified in Ob-
servation 1. With Alg. 2, however, no such LFA loops arise,
thanks to the improved trap node condition. Finally, we also
found that the running time of Alg. 2 and Alg. 1 was in the
order of mere seconds (with the heuristics being consistently
faster than the ILP), except for a few cases when we hit a hard
instance that took hours for the ILP solver to work out. The
heuristics, on the other hand, always terminated in reasonable
and predictable time frame thanks to its guaranteed polynomial
complexity.

V. CONCLUSIONS

Lately, Loop-Free Alternates for implementing fast protec-
tion in IP and MPLS/LDP networks have become an industrial
requirement [30]. Unfortunately, LFA in many cases leaves the
network vulnerable to certain failure scenarios. In this paper,
we have sought to resolve this issue by establishing a Resilient
IP Overlay on top of the physical network, which supplies
“virtual LFAs” to unprotected node-pairs. We have identified
several deficiencies in existing work and we designed an im-
proved heuristics to overcome these. Our algorithm eliminates
LFA loops completely and allows to trade-off running time
for optimality via setting a simple parameter. As evidenced
by numerical evaluations, the performance of our algorithm in
some cases even surpasses that of the ILP-based solution of
[22]. Moreover, in contrast to that, it also runs in polynomial
time. We believe that this finding opens the door for a wider
adoption of Resilient IP Overlays in operational IP networks.
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